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Errata The ADS product may contain references to "HP" or "HPEESOF" such as in file
names and directory names. The business entity formerly known as "HP EEsof" is now part
of Agilent Technologies and is known as "Agilent EEsof". To avoid broken functionality and
to maintain backward compatibility for our customers, we did not change all the names
and labels that contain "HP" or "HPEESOF" references.

Warranty The material contained in this document is provided "as is", and is subject to
being changed, without notice, in future editions. Further, to the maximum extent
permitted by applicable law, Agilent disclaims all warranties, either express or implied,
with regard to this documentation and any information contained herein, including but not
limited to the implied warranties of merchantability and fitness for a particular purpose.
Agilent shall not be liable for errors or for incidental or consequential damages in
connection with the furnishing, use, or performance of this document or of any
information contained herein. Should Agilent and the user have a separate written
agreement with warranty terms covering the material in this document that conflict with
these terms, the warranty terms in the separate agreement shall control.

Technology Licenses The hardware and/or software described in this document are
furnished under a license and may be used or copied only in accordance with the terms of
such license. Portions of this product include the SystemC software licensed under Open
Source terms, which are available for download at http://systemc.org/ . This software is
redistributed by Agilent. The Contributors of the SystemC software provide this software
"as is" and offer no warranty of any kind, express or implied, including without limitation
warranties or conditions or title and non-infringement, and implied warranties or
conditions merchantability and fitness for a particular purpose. Contributors shall not be
liable for any damages of any kind including without limitation direct, indirect, special,
incidental and consequential damages, such as lost profits. Any provisions that differ from
this disclaimer are offered by Agilent only.

Restricted Rights Legend U.S. Government Restricted Rights. Software and technical
data rights granted to the federal government include only those rights customarily
provided to end user customers. Agilent provides this customary commercial license in
Software and technical data pursuant to FAR 12.211 (Technical Data) and 12.212
(Computer Software) and, for the Department of Defense, DFARS 252.227-7015
(Technical Data - Commercial Items) and DFARS 227.7202-3 (Rights in Commercial
Computer Software or Computer Software Documentation).
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 Overview and Benefits
This topic introduces the Verilog-A language and software in terms of its capabilities,
benefits, and typical use.

 

 Analog Modeling
 Analog modeling enables designers to capture high-level behavioral descriptions of
components in a precise set of mathematical terms. The analog module's relation of input
to output can be related by the external  parameter description and the mathematical
relations between the input and output ports.

Analog models give the designer control over the level of abstraction with which to
describe the action of the component. This can provide higher levels of complexity to be
simulated, allow faster simulation execution speeds, or can hide intellectual property.

An analog model should ideally model the characteristics of the behavior as accurately as
possible, with the trade off being model complexity, which is usually manifested by
reduced execution speed. For electrical models, besides the port relationship of charges
and currents, the developer may need to take thermal behavior, physical layout
considerations, environment (substrate, wires) interaction, noise, and light, among other
things into consideration. Users prefer that the model be coupled to measurable
quantities. This provides reassurance in validating the model, but also provides a means
to predict future performance as the component is modified.

Models often have to work with controlling programs besides the traditional simulator.  
Optimization, statistical, reliability, and synthesis programs may require other information
than which the model developer was expecting.

 

 Hardware Description Languages
 Hardware description languages ( HDLs) were developed as a means to provide varying
levels of abstraction to designers. Integrated circuits are too complex for an engineer to
create by specifying the individual transistors and wires. HDLs allow the performance to
be described at a high level and simulation synthesis programs can then take the
language and generate the gate level description.

 Verilog and  VHDL are the two dominant languages; this documentation is concerned with
the Verilog language.

As behavior beyond the digital performance was added, a  mixed-signal language was
created to manage the interaction between  digital and  analog signals. A subset of this,
Verilog-A, was defined. Verilog-A describes analog behavior only; however, it has
functionality to interface to some digital behavior.
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 Verilog-A
 Verilog-A provides a high-level language to describe the analog behavior of conservative
systems. The disciplines and natures of the Verilog-A language enable designers to reflect
the potential and flow descriptions of electrical, mechanical, thermal, and other systems.

Verilog-A is a procedural language, with constructs similar to  C and other languages. It
provides simple constructs to describe the  model behavior to the simulator program. The
model effectively de-couples the description of the model from the simulator.

The model creator provides the constitutive relationship of the inputs and outputs, the
parameter names and ranges, while the Verilog-A compiler handles the necessary
interactions between the model and the simulator. While the language does allow some
knowledge of the simulator, most model descriptions should not need to know anything
about the type of analysis being run.

 

 Compact Models
 Compact models are the set of  mathematical equations that describe the performance of
a device. Commercial simulators use compact models to describe the performance of
semiconductor devices, most typically transistors.

There is a wide range of  modeling categories, including  neural nets, empirical, physical,
and table based. Each has distinct advantages and disadvantages as listed in the following
table.

Type Advantage Disadvantage

Physical Predicts performance best
Extrapolates

Must understand physics
Slow

Empirical Reasonably good prediction
Fast

Can give non-physical behavior

Tabular Very general
Easy to extract
Reasonable execution speed

Cannot extrapolate
Minimal parameter info

Neural net Very general
Reasonable execution speed

Cannot extrapolate
Minimal parameter info

For electrical modeling, most compact device models use empirical modeling based on
physical models. This provides the best combination of execution speed, accuracy, and
prediction. However, non-physical behavior may result when the equations are used
outside their fitting range. Model creators should also be aware of the issues around  
parameter extraction. If a model's parameters cannot easily or accurately be extracted,
the model will not be successful.

Once created, a compact model can be implemented in a simulator in a variety of methods
(see the following table). Each method has its own advantages and disadvantages, but in
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general, the simpler the interface, the less capable it is.

Type Advantage Disadvantage

Macro model Simple, portable Limited to available primitives

Proprietary interface Power, fast Need access to simulator
Not portable

Public interface Reasonably powerful Usually missing some capability
Not portable
Unique complexity
Slow

AHDLs (Verilog-A) Simple
Power
Portable
Protected

Language has some restrictions

The most powerful interface is the proprietary interface to the simulator. For many
reasons, most typically  intellectual property protection, the proprietary interface is not
made public. This is because the interface usually requires such intimate details of the
simulator analysis operation that a clever investigator could discern much detail about the
inner workings of the simulation algorithms.

On the other hand, a detailed, complex interface also requires a detailed understanding by
the model developer to properly access the functionality of the analysis. This can require
as much effort as the development of the model itself. If the model is to be added using
this interface to other simulators, often the effort of learning one interface does not
provide much advantage in learning the nuances of the other.

Simulator vendors often provide simplified interfaces, either a scaled-back code level
interface, or a custom symbolic interface. The simplicity always comes at a price of
reduced functionality, decreased execution speed, or a lack of portability.

Analog Hardware Description languages ( AHDLs) solve most of these problems, except
the problem of execution speed. However,  compiler technology in Advanced Design
System provides the abstraction and simplicity of Verilog-A with an execution speed with a
factor of two of code level interfaces.

 

 Simulation
Most analog simulators evolved from the  SPICE program released by UC Berkeley. The
analog simulator solves a simple set of relations for a large number of unknowns to
provide the designer with the voltage and currents at each of the  nodes in the circuit as
either a function of  time or frequency. The electrical relations are simply the  Kirchoff
current law and voltage loop laws:

The instantaneous currents from all branches entering a node must sum to zero.
The instantaneous voltages around any closed loop must sum to zero.

 Kirchoff's Current and Voltage Laws
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The program solves these equations using an algorithm known as  Newton-Raphson. The
program guesses a solution to the relation:

F(v,t)=0

It next calculates if the solution is close enough, and if it is, it stops. If the program needs
to find the next guess, it calculates the  Jacobian of the function (the set of  partial
derivatives), which provides a pointer towards the real solution. This is best seen in a
simple case where F(v,t) is one dimensional:

 Newton-Raphson Algorithm where r is the root

 

The program calculates F(x1) and then uses the derivative (the slope of the line) to
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estimate the  zero-crossing. It then uses this new point, x2, as the next guess. As long as

the function is continuous and smooth (and the program does not get stuck in local
minima), the program will quickly approach, or converge to, the actual point where F(X)
crosses zero.

In modern simulation programs the trick is to quickly find the solution for a large number
of  variables, and for variables that may have strong (nonlinear) relations to  independent
variables.

During a simulation, the program queries each element in the circuit for information. The
resistor, the capacitor, or the transistor, for example, needs to report back to the
simulator its behavior at a particular guess. It must also report back its slope with respect
to the voltages at that point.

The behavior of each element is described by  mathematical equations that, taken as a
group, are called a  compact device model . The compact device model can be very simple
or very complicated. For example, in the simplest case, a resistor can be described by
Ohm's law:

I = V/R

The derivative is a constant, the inverse of the resistance.

However, even for simple components like resistors, the models can become rather
complicated when other effects are added, such as, self-heating, self-inductance, thermal
noise, etc. The Verilog-A compiler manages all of the necessary interfaces so that, for the
most part, the developer need only be concerned with  model behavior.
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 Verilog-A and Verilog-AMS Modules
This topic discusses the concept of  Verilog-A modules, showing the basic structure of a  
module declaration, how to define  parameters and  ports, and how to define a simple  
analog block.

 

 Declaring Modules
The module declaration provides the simulator with the name of the module, the input and
output ports, parameter information, and the  behavioral description of the model. Top-
level modules are modules which are included in the source text but are not instantiated.
Module definitions cannot contain the text of another module definition. A module
definition can nest another module by instantiating it. For more information, refer to
Hierarchical Structures.

 

 Module Instantiation

 

 Syntax

module | macromodule module_identifier [(port {, port, ...})]

  module_statements
endmodule

where module_identifier is the name of the module and the optional list of port name(s)
defines the connections to the module, and module_statements describe the module
behavior.

 

 Example

The simplest example is a  resistor.

`include "disciplines.vams"

module R(p,n);

   electrical p,n;

   parameter real R=50.0;

   analog

      V(p,n) <+ R * I(p,n);

endmodule

The first line provides common definitions. The line module R(p, n) ; declares the module
name to be R and that it has 2 ports, named p and n , which the next line further
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describes by attributing the electrical discipline to the ports.

This module has one parameter, R , which is declared as a real type with a default value
of 50.0.  Parameters provide a way to pass information into the module at the time of
instantiation.

The  analog block, in this example a single line, describes the behavior using a  voltage
contribution statement to assign the voltage based on the  access function value of I()
times R.

 

 Ports
 Ports provide a way to connect modules to other modules and devices. A port has a
direction: input, output, or inout, which must be declared. The ports are listed after the  
module declaration. The port type and port direction must then be declared in the body of
the module.

 

 Examples

module resistor(p,n);

  inout p,n;

  electrical p,n;

...

module modName(outPort, inPort);

  output outPort;

  input inPort;

  electrical outPort, inPort;

...

Ports can support vectors (buses) as well.

 

 Describing Analog Behavior
The  analog behavior of the component is described with  procedural statements defined
within an  analog block. During simulation, all of the analog blocks are evaluated. Each
module is evaluated in the design as though it were contributing concurrently to the
analysis.

 

 Syntax

analog block_statement
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where block_statement is a single analog statement of a group of statements.

 

 Examples

analog V(n1, n2) <+ 1; // A simple 1 volt source

analog begin // A multi-statement analog block

  vin = V(in);

  if (vin >= signal_in_dead_high)

      vout = vin - signal_in_dead_high;

  else

      if (vin <= signal_in_dead_low)

         vout = vin - signal_in_dead_low;

      else

         vout = 0.0;

  V(out) <+ vout;

end

 

 Branches
A  branch is defined as a path between two  nets. A branch is conservative if both nets are
conservative and two associated quantities,  potential and  flow, are defined for the
branch. If either net is a  signal-flow net, then the branch is defined as a  signal-flow
branch with either a potential or flow defined for the branch.

 

 Syntax

branch list_of_branches

where list_of_branches is a comma-separated list of branch names.

 

 Analog Signals
 Analog signals are signals associated with a discipline that has a  continuous domain.
Their value can be accessed and set via various functions and  contribution statements.
This section describes the analog signal functions. It describes how to access  signal data
from  nodes and  vectors, as well as how to use the  contribution operator.

 

 Accessing Net and Branch Signals
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Signals on nets and branches can be accessed only by the  access functions of the
associated discipline. The name of the net or the branch is specified as the argument to
the access function.

 

 Examples

Vin = V(in);

CurrentThruBranch = I( myBranch );

 

 Indirect branch assignment

An  indirect branch assignment is useful when it is difficult to solve an equation. It has this
format,

V(n) : V(p) == 0;

which can be read as "find V(n) such that V(p) is equal to zero." This example shows that  
node n should be driven with a voltage source and the voltage should be such that the
given equation is satisfied. V(p) is probed and not driven.

Note
Indirect branch assignments are allowed only within the  analog block.

 

 Branch Contribution Statement

A  branch contribution statement typically consists of a left-hand side and a right-hand
side, separated by a  branch contribution operator. The right-hand side can be any
expression which evaluates to (or can be promoted to) a real value. The left-hand side
specifies the source branch signal to assign the right-hand side. It consists of a  signal
access function applied to a branch. The form is,

V(n1, n2) <+ expression;

I(n1, n2) <+ expression;

Branch contribution statements implicitly define  source branch relations. The branch
extends from the first  net of the access function to the second net. If the second net is
not specified in the call, the  global reference node ( ground ) is used as the  reference net.

 

 User-Defined Analog Functions
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 Analog functions provide a modular way for a  user-defined function to accept  
parameters and return a value. The functions are defined as analog or digital and must be
defined within modules blocks.

The analog function is of the form:

analog function {real|integer} function_name;

input_declaration;

statement_block;

endfunction

The input_declaration describes the  input parameters to the function as well as any
variables used in the  statement block:

input passed_parameters;

real parameter_list;

The statement_block and analog function:

can use any statements available for  conditional execution
cannot use  access functions
cannot use  contribution statements or event control statements
must have at least one input declared; the  block item declaration declares the type
of the inputs as well as  local variables used
cannot use  named blocks
can only reference locally-defined variables or  passed variable arguments

The  analog function implicitly declares a variable of the same name as the function,
function_name . This variable must be assigned in the statement block; its last assigned
value is passed back.

 

 Example

analog function real B_of_T;

  input B, T, T_NOM, XTB;

  real B, T, T_NOM, XTB;

  begin

      B_of_T = B * pow(T / T_NOM, XTB);

  end

endfunction

The function is called by the line,

BF_T = B_of_T(BF, T, T_NOM, XTB);
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 Hierarchical Structures
Verilog-A supports  hierarchical descriptions, whereby modules can instantiate other
modules. This section describes the procedure for implementing and calling hierarchical
models.

 

 Syntax

module_or_primative [#(.param1(expr)[, .param2(expr))]]instance_name

({node {, node});

 

 Examples

phaseDetector #(.gain(2)) pd1(lo, rf, if_);

vco #(.gain(loopGain/2), .fc(fc) ) vco1(out, lo);

 

 Module Instance Parameter Value Assignment

The  default parameter values can be overridden by assigning them via an  ordered list or
explicitly when  instantiating a module.

 

 By Order

In this method, the  assignment order in the  instance declaration follows the order of the  
parameter declaration in the  module declaration. It is not necessary to assign all of the
parameters, but all parameters to the left of a declaration must be defined (that is,
parameters to the left of the last declaration can not be skipped).

 

 Example

// Voltage Controlled Oscillator

  module vco(in, out);

  inout in, out;

  electrical in, out;

  parameter real gain = 1, fc = 1;

  analog

     V(out) <+ sin(2*`M_PI*(fc*$realtime() + idt(gain*V(in))));

  endmodule

...
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// Instantiate a vco module name vco1 connected to out and

// lo with gain = 0.5, fc = 2k

vco #(0.5, 2000.0) vco1(out, lo);

 

 By Name

Alternatively,  instance parameters can be assigned explicitly by their name, where the
name matches the parameter name in the module. In this method, only the parameters
that are modified from their default values need to be assigned.

 

 Example

// Voltage Controlled Oscillator

module vco(in, out);

inout in, out;

electrical in, out;

parameter real gain = 1, fc = 1;

analog

   V(out) <+ sin(2*`M_PI*(fc*$realtime() + idt(gain*V(in))));

endmodule

...

// Instantiate a vco module name vco1 connected to out and lo with

// gain = loopGain/2, fc = fc

vco #(.gain(loopGain/2), .fc(fc) ) vco1(out, lo);

 

 Port Assignment

 Ports can be assigned either via an  ordered list or directly by name.

 

 By Order

To connect ports by an ordered list, the ports in the  instance declaration should be listed
in the same order as the  module port definition.

 

 Example

module sinev(n1,n2);

 electrical n1,n2;

 parameter real gain = 1.0, freq = 1.0;

 analog begin

   V(n2,n1) <+ gain * sin(2 * `M_PI * freq * $abstime);
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   $bound_step(0.05/freq);

 end

endmodule

...

// Instantiate a source1 with in->n1, out->n2

sinev #(.gain(G), .freq(F) ) source1(in, out)

 

 Scope

Verilog-A supports  name spaces for the following elements:

 modules
 tasks
 named blocks
 functions
 analog functions

Within each  scope only one identifier can be declared. To reference an identifier directly,
the identifier must be declared locally in the  named block, or within a module, or within a
named block that is higher in the same branch of the name hierarchy that contains the
named block. If an identifier is declared locally, it will be used, otherwise the identifier will
be searched upwards until it is found, or until a  module boundary is reached.
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 Lexical Conventions
This topic describes the overall  lexical conventions of Verilog-A, and how the language
defines and interprets various elements such as  white space,  strings,  numbers, and  
keywords.

Verilog-A consists of lexical  tokens (one or more characters) of the form:

White Space
Comments
Operators
Strings
Numbers
Keywords
Identifiers
System Tasks and Functions
Compiler Directives

The source file is free form where  spaces,  tabs, and  newlines are only token separators
and have no other significance. Lines can be extended using the  line continuation
character / where needed.

 

 White Space
 White space consists of  spaces,  tabs,  newlines, and  form feeds. They separate  tokens,
otherwise are ignored.

 

 Comments
There are two ways to include  comments:

A  single line comment starts with // and continues to the end of the line.
Example

// This is a single line comment

 Block statements begin with /* and end with */ and cannot be nested but can
include single line comments.
Example

/* This is a block comment which can

  include any ASCII character
*/
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 Operators
Verilog-A has  unary (single) operators,  binary (double) operators and the  conditional
operator. Unary operators appear to the left of the operand, and binary between their
operands. The conditional operator separates the three operands with two special
characters.

 

 Strings
 Strings are sequences of characters enclosed by  double quotes and contained on one
line.

 

 Example

"This is a string."  

 Numbers
 Constant numbers can be specified as integer or a  real constants;  complex  constants
are not allowed.  Scale factors can be used for readability on real numbers.

 

 Integer Numbers

 Integer constants must be specified as a sequence of the digits 0 through 9 in a  decimal
format with an optional + or -  unary operator at the start. The  underscore character can
be used at any position except the first character as a means to break up the number for
readability.

 

 Examples

12345

-122

867_5309  

 Real Numbers

 Real constants follow the IEEE standard for  double precision floating point numbers, IEEE
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STD-754-1985. They can be specified in decimal notation or  scientific notation. If a
decimal point is used, the number must have at least one digit on each side of the decimal
point (e.g., 0.1 or 17.0 are allowed, .1 or 17. are not). As in the integer case, the  
underscore character is allowed anywhere but the first character and is ignored.

 

 Examples

3.14

1.23e-9

27E9

876_763_300E10  

 Scale Factors

 Scale factors can be used on  floating point numbers, but cannot be used with numbers in
scientific format. The scale factor symbol and the number cannot have a space between
them.

Scale Factor Symbol Multiplier

T 1012

G 109

M 106

K or k 103

m 10 -3

μ 10 -6

n 10 -9

p 10 -12

f 10 -15

a 10 -18

 

 Examples

2.5m      2.5e-3      0.025

0.11M     1.1e5       110000

 

 Keywords
 Keywords are  predefined non-escaped identifiers. Keywords define the  language
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constructs. They are defined in lowercase only. Reserved Words in Verilog-A and Verilog-
AMS (verilogaref), lists all of the keywords, which includes the  Verilog-AMS keywords.

 

 Identifiers
 Identifiers give objects unique names for reference and can consist of any sequence of
letters, digits, the  $ character, and the  _ (underscore) character. The first character of
an identifier can be a letter or underscore, it cannot be the $ character or a digit.
Identifiers are  case sensitive.

 

 Examples

deviceName

i

Vth0

vth0

_device

sheet_rho$ 

 Escaped Identifiers
Escaped identifiers begin with the back-slash character \ and end with white space (either
a space, tab, newline, or formfeed). This allows identifiers to use any printable ASCII
characters (the decimal values 33 through 126 or 21 through 7E in hexadecimal).

The leading back-slash character and the terminating white space are not considered to be
part of the identifier. Therefore, an escaped identifier \bus123 is treated the same as a
non-escaped identifier bus123.

 Examples

\bus+index

\net1/\net2

 System Tasks and Functions
 User-defined tasks and  functions use a  $ character to declare a  system task or system
function. Any valid identifier, including  keywords (not already in use in this construct),
can be used as system task and system function names. Note that for  backward
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compatibility with earlier versions of Verilog-A, this implementation reserves some task
and function names.

 

 Examples

$temperature;

$strobe("hello");  

 Compiler Directives
 Compiler directives are indicated using the  ` (accent grave) character. For more
information, refer to The Verilog-A and Verilog-AMS Preprocessor (verilogaref), for a
discussion of compiler directives.
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 Data Types
This section describes the various  data types that Verilog-A supports as well as shows the
correct format and use model. Verilog-A supports  integer,  real, string, parameter, and  
discipline data types.

 

 Integer
An  integer declaration declares one or more variables of type integer holding values
ranging from -231 to 231 -1.  Arrays of integers can be declared using a range which
defines the upper and lower  indices of the array where the indices are  constant
expressions and shall evaluate to a positive or negative integer, or zero.

 

 Example

integer flag, MyCount, I[0:63];  

 Real
A  real declaration declares one or more  variables of type real using IEEE STD-754-1985
(the IEEE standard for  double precision floating point numbers).  Arrays of reals can be
declared using a range which defines the upper and lower  indices of the array where the
indices are constant expressions and shall evaluate to a positive or negative integer, or
zero.

 

 Example

real X[1:10], Tox, Xj, Cgs;

 Multi-dimensional Arrays
The integer and real data types support arrays, including multi-dimensional arrays. Arrays
are defined by the range [constant_expression:constant_expression]. Multi-dimensions
are defined by adding more range expressions.

 Example

parameter integer range1 = 6;

parameter integer range2 = 4;

parameter integer range3 = 1;

real buffer1[0:range1-1][range2:11:2], buffer2[1:10];
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integer i[0:range3][0:range3+1],j,k;

In this example, the real array buffer1 has 2 dimensions with the first dimension from 0 to
size1-1, where range1 is provided via the parameter expression and the second dimension
from range2 down to 1, and the third dimension from 1 to 2. The real array buffer2 has 10
elements indexed from 1 to 10. Integer arrays are defined in the same manner.

 String
Verilog-AMS includes the string data type, which is an ordered collection of characters.
The length of a string variable is the number of characters in the collection.

 Example

string S = "hello";

The operators that can be used with string parameters are listed in the table below.

Operator Semantics

== Equality. Checks if the two strings are equal. Result is 1 if they are equal and 0 if not.
Both operands can be string parameters, or one can be a string parameter and the other
a constant string literal.

!= Inequality.

Str1 < Str2
Str1 <= Str2
Str1 > Str2
Str1 >= Str2

Comparison. Relational operators return 1 if the corresponding condition is true using the
lexicographical ordering of the two strings Str1 and Str2.

{Str1,Str2,...,Strn} Concatenation of Str1, Str2... Strn

{M{Str}} Replication. Multiplier M must be of integral type and can be nonconstant

Str1.len() Returns the length of the string Str1

Str1.substr(a,b) Returns the substring starting at index a and ending at index b

 

 Type Conversion
Verilog-A maintains the  number type during  expression evaluation and will also silently
convert numbers to the type of the variable. This can lead to unexpected behavior. For
example, the contribution statement,

I(di,si) <+ white_noise(4 * `P_K * T * (2/3) * abs(gm), "shot");

will always return 0 since the 2/3 term is evaluated using  integer mathematics, and no  
noise is contributed from the noise power expression. Instead, use 2.0/3.0 which will
evaluate to a real number.

 

 Net Discipline
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The  net discipline is used to declare  analog nets. A net is characterized by the discipline
that it follows. Because a net is declared as a type of  discipline, a discipline can be
considered as a  user-defined type for declaring a net.

A discipline is a set of one or more nature definitions forming the definition of an  analog
signal whereas a  nature defines the characteristics of the quantities for the simulator. A
discipline is characterized by the  domain and the  attributes defined in the natures for
potential and flow.

The discipline can bind:

One nature with  potential
Nothing with either potential or  flow (an  empty discipline)

System defined disciplines are predefined in the  disciplines.vams file, a portion of which
is shown below.

// Electrical

// Current in amperes

nature Current

units = "A";

access = I;

idt_nature = Charge;

`ifdef CURRENT_ABSTOL

abstol = `CURRENT_ABSTOL;

`else

abstol = 1e-12;

`endif

endnature

// Charge in coulombs

nature Charge

units = "coul";

access = Q;

ddt_nature = Current;

`ifdef CHARGE_ABSTOL

abstol = `CHARGE_ABSTOL;

`else

abstol = 1e-14;

`endif

endnature

// Potential in volts

nature Voltage

units = "V";

access = V;

idt_nature = Flux;

`ifdef VOLTAGE_ABSTOL

abstol = `VOLTAGE_ABSTOL;

`else

abstol = 1e-6;

`endif

endnature
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 Ground Declaration
A  global reference node, or  ground, can be associated with an already declared  net of  
continuous discipline.

 

 Syntax

ground list_of_nets ;

where list_of_nets is a comma-separated list of nets.

 

 Example

`include "disciplines.vams"

module load(p);

electrical p, gnd;

ground gnd;

parameter real R=50.0;

analog

V(p) <+ R * I(p, gnd);

endmodule

 

 Implicit Nets
 Nets used in a structural description do not have to be explicitly declared. The net is
declared implicitly as  scalar, the  discipline as empty, and the  domain as undefined.

 

 Example

`include "disciplines.vams"

module Implicit_ex(Input1, Input2, Output1, Output2, Output3);

input  Input1, Input2;

output Output1, Output2, Output3;

electrical Input1, Input2, Output1, Output2, Output3;

blk_a a1(Input1, a_b1);

blk_a a2(Input2, a_b2);

blk_b b1(a_b1, c_b1);

blk_b b2 (a_b2, c_b2);

blk_c c1(Output1,Output2, Output3,c_b1,c_b2);

endmodule
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 Genvar
 Genvars are used for accessing analog signals within behavioral looping constructs.

genvar list_of_genvar_identifiers ;

where list_of_genvar_identifiers is a comma-separated list of genvar identifiers.

 

 Example

genvar i , j ; 

 Parameters
 Parameters provide the method to bring information from the circuit to the model.

Parameter assignments are a  comma-separated list of assignments. The right hand side
of the assignment is a  constant expression (including previously defined parameters).

For parameter  arrays, the initializer is a list of constant expressions containing only  
constant numbers and previously defined parameters within bracket delimiters, {}.

Parameter values cannot be modified at runtime.

parameter {real | integer} list_of_assignments ;

where the list_of_assignments is a comma separated list of

parameter_identifier = constant [value-range ]

where value-range is of the form

from value_range_specifier

| exclude value_range_specifier

| exclude constant_expression

where the value_range_specifier is of the form

start_paren expression1 : expression2 end_paren

where start_paren is " [ " or " ( " and end_paren is " ] " or " ) " and expression1 is
constant_expression or " -inf " and expression2 is constant_expression or " inf ".

The  type(real | integer) is optional. If it is not given, it will be derived from the  
constant assignment value. A  parenthesis indicates the  range can go up to, but not
include the value, whereas a   bracket indicates the range includes the  endpoint. Value
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ranges can have simple exclusions as well.

 

 Examples

/* Define a parameter of type real with a default value of 0 and allowed

values between 0 and up to, but not including, infinity and excluding values

between 10 and 100 (however, 10 and 100 are acceptable) and 200 and 400 (200

is acceptable, but 400 is not.) */

parameter real TestFlag = 0 from [0:inf) exclude (10:100) exclude (200:400];

/* Define a real parameter with a default value of 27, ranging from -273.15

up to, but not including infinity. */

parameter real Temp = 27 from [-273.15:inf);

/* Define a parameter R with a default value of 50, ranging from, but not

including, 0 to infinity. R is implicitly defined as type integer. */

parameter R = 50 from (0:inf];

 String Parameters

Strings are useful for parameters that act as flags or other text input. The set of allowed
values for the string can be specified as a comma-separated list of strings inside curly
braces, but ranges (and exclusions) are not allowed.

The operators that can be used with string parameters are the same as those listed in the
table for strings.
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 Analog Block Statements
The analog block is where most of the  analog behavior is described. This topic describes
the  analog block, and discusses the various  procedural control statements available in
Verilog-A.

 Analog Initial Block
The analog initial block is a special type of analog block. It should be used for initialization
of variables that do not change during an analysis. An analog initial block is also
comprised of a procedural sequence of statements.

 Example

analog initial begin

   Rs_T = RS (1 + dT * TC1);

   Area_eff = (L - Lw) * (W - Wu);

end

If there are multiple analog initial blocks used in a module, then they are executed in
order, as though they were concatenated. Since statements in analog initial blocks are
only for initialization purposes, analog initial block cannot contain these types of
statements:

Statements with access functions or analog operators
Contribution statements
Event control statements

The analog initial block is executed once for each analysis, and will be executed for each
new sweep of a parameter sweep. If a parameter or variable that is referenced from an
analog initial block is changed during a swept analysis, then the analog initial blocks are
re-executed so that the new value is re-evaluated. For most cases, the analog initial block
is the preferred way to initialize variables (compared to the global event initial_step) since
the simulator can efficiently manage the variables that might change during swept
analysis.

 

 Sequential Block
A  sequential block is a grouping of two or more statements into one single statement.

 

 Syntax

begin [ : block_identifier [block_item_declaration ]]

{ statement }
end
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The  optional block identifier allows for  naming of the block. Named blocks allow  local
variable declaration.

 

 Example

if (Vds < 0.0) begin: RevMode

   real T0; // T0 is visible in this block only

   T0 = Vsb;

   Vsb = Vsb \+ Vds;

   Vdss = - Vds \+ T0;

end

 

 Conditional Statement (if-else)
The  conditional statement is used to determine whether a statement is executed or not.

 

 Syntax

if ( expression ) true_statement ;

[ else false_statement ; ]

If the expression evaluates to true (non-zero), then the true_statement will be executed.
If there is an else false_statement and the expression evaluates to false (zero), the
false_statement is executed instead.

Conditional statements may be nested to any level.

 

 Example

if (Vd < 0) begin

   if (Vd < -Bv)

       Id = -Area * Is_temp * (limexp(-(Bv + Vd) / Vth) + Bv / Vth);

   else if (Vd == -Bv)

       Id = -Area * Ibv_calc;

   else if (Vd <= -5 * N * Vth)

       Id = -Area * Is_temp;

   else // -5 nKT/q <= Vd < 0

       Id = Area * Is_temp * (limexp(Vd / Vth) - 1);

end

else

   Id = Area * Is_temp * (limexp(Vd / (N * Vth)) - 1);
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 Case Statement
A  case statement is useful where  multiple actions can be selected based on an
expression. The format is:

case ( expression ) case_item { case_item } endcase

where case_item is:

expression { , expression } : statement_or_null

| default [ : ] statement_or_null

The default-statement is optional; however, if it is used, it can only be used once. The
case expression and the case_item expression can be computed at runtime (neither
expression is required to be a  constant expression). The case_item expressions are
evaluated and compared in the exact order in which they are given. If one of the
case_item expressions matches the case expression given in parentheses, then the
statement associated with that case_item is executed. If all comparisons fail then the
default item statement is executed (if given). Otherwise none of the case_item statements
are executed.

 

 Example

case(rgeo)

1, 2, 5: begin

   if (nuEnd == 0.0)

       Rend = 0.0;

   else

       Rend = Rsh * DMCG / (Weffcj * nuEnd);

   end

3, 4, 6: begin

   if ((DMCG + DMCI) == 0.0)

       $strobe"(DMCG + DMCI) cannot be equal to zero\n");

   if (nuEnd == 0.0)

       Rend = 0.0;

   else

       Rend = Rsh * Weffcj / (3.0 * nuEnd * (DMCG + DMCI));

   end

default:

   $strobe("Warning: Specified RGEO = %d not matched (BSIM4RdsEndIso)\n", rgeo);

endcase

 

 Repeat Statement
The  repeat() statement executes a statement a fixed number of times. The number is
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given by the repeat expression.

 

 Syntax

repeat ( expression ) statement  

 Example

repeat (devIndex - startIndex) begin

   devTemp = incrByOne(devTemp, offset);

end

 

 While Statement
 while() executes a statement until its control expression becomes false If the expression
is false when the loop is entered, the statement is not executed at all.

 

 Syntax

while ( expression ) statement  

 Example

while(devTemp < T) begin

   devTemp = incrTemp(devTemp, offset);

end

 

 For Statement
The  for() statement controls execution of its associated statement (s) using an  index
variable. If the associated statement is an analog statement, then the control mechanism
must consist of  genvar assignments and genvar expressions only. No use of procedural
assignments and expressions are allowed.

 

 Syntax

for ( procedural_assignment ; expression;

  procedural_assignment ) statement
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If the for() loop contains an analog statement , the format is:

for ( genvar_assignment; genvar_expression;

  genvar_assignment ) analog_statement

Note that the two are syntactically equivalent except that the executed statement is also
an  analog statement (with the associated restrictions).

 

 Example

for (i = 0; i < maxIndex; i = i +1;) begin

   outReg[i] = getValue(i);

end
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 Mathematical Functions and Operators
Verilog-A supports a range of  functions and  operators that may be used to form  
expressions that describe  model behavior and to control  analog procedural block flow.
Return values from these functions are only a function of the current parameter value.

 

 Unary/Binary/Ternary Operators
Arithmetic operators follow conventions close to the  C programming language.

Operator Type

+ - * / Arithmetic

% Modulus

> >= < <= Relational

!= == Logical equality

! Logical negation

&& Logical and

|| Logical or

~ Bit-wise negation

& Bit-wise and

| Bit-wise inclusive or

^ Bit-wise exclusive or

^~ ~^ Bit-wise equivalence

<< Left shift

>> Right shift

?: Conditional

or Event or

{} {{ }} Concatenation, replication

 

 Arithmetic Operators

The  arithmetic operators are summarized in the following table.

Operator Function

a + b a plus b

a - b a minus b

a * b a times b

a / b a divided by b

a % b a modulo b

See also Precedence and Arithmetic Conversion.
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 Relational Operators

The following table defines and summarizes the  relational operators.

Operator Function

a < b a is less than b

a > b a is greater than b

a <= b a is less than or equal to b

a >= b a is greater than or equal to b

The relational operators evaluate to a zero (0) if the relation is false or one (1) if the
relation evaluates to true. Arithmetic operations are performed before relational
operations.

 

 Examples

a = 10;

b = 0;

a < b evaluates to false.

 

 Logical Operators

 Logical operators consist of equality operators and connective operators and are
summarized in the following table.

Operator Function

a == b a is equal to b

a != b a is not equal to b

a && b a AND b

a || b a OR b

!a not a

 

 Bit-wise Operators

 Bit-wise operators perform operations on the individual bits of the operands following the
logic described in the tables below.

 Bitwise AND operator
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& 0 1

0 0 0

1 0 1
 Bitwise OR operator

| 0 1

0 0 1

1 1 1
 Bitwise Exclusive OR operator

^ 0 1

0 0 1

1 1 0
 Bitwise Exclusive NOR operator

^~
~^

0 1

0 1 0

1 0 1
 Bitwise Negation operator

~  

0 1

1 1

 

 Shift Operators

The  shift operators shift their left operand either right (>>) or left (<<) by the number of
bit positions indicated by their right operand, filling the vacated bit positions with zeros
(0). The right operand is treated as an unsigned number.

 

 Example

integer mask, new;

analog begin

   mask = 1;

   new = (mask << 4);

end

 

 Conditional (Ternary) Operator

The  conditional operator consists of three operands, separated by the operators ?
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(question mark) and : (colon).

 

 Syntax

expression1 ? expression2 : expression3

The expression1 is first evaluated. If it evaluates to false (0) then expression3 is evaluated
and becomes the result. If expression1 is true (any non-zero value), then expression2 is
evaluated and becomes the result.

 

 Example

BSIM3vth0 = (BSIM3type == `NMOS) ? 0.7 : -0.7;

 

 Precedence

The following table shows the  precedence order of the operators, with operators in the
same row having equal precedence. Association is left to right with the exception of the
conditional (ternary) operator, which associates right to left. Parentheses can be used to
control the order of the evaluation.

Operators Priority

+ - ! ~ (unary) Highest

* / % ..

+ - (binary) ..

<< >> ..

== != ..

& ~& ..

^ ^~ ~^ ..

| ~ | ..

&& ..

|| ..

? : Lowest

 

 Concatenation Operator

The  concatenation operator {} is used for joining  scalar elements into  compound
elements.
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 Example

parameter real taps[0:3] = {1.0, 2.0, 3.0, 4.0};

 

 Expression Evaluation

The  expression evaluation follows the order precedence described in the previous table. If
the results of an expression can be determined without evaluating the entire expression,
the remaining part of the expression is not evaluated, unless it contains  analog
expressions. This expression evaluation rule is known as  short-circuiting.

 

 Arithmetic Conversion

 Verilog-A performs  automatic conversion of numeric types based on the operation. For
functions that take  integers, real numbers are converted to integers by rounding to the
nearest integer, with ties rounded away from zero (0). For operators, a common  data
type is determined based on the  operands. If either operand is real, the other operand is
converted to real.

 

 Examples

a = 7.0 + 3; // 3 becomes 3.0 and then the addition is performed, a =

10.0

a = 1 / 3; // The result of this integer division is zero, a = 0.

a = 7.0 + 1 / 3; /* The 1/3 is evaluated by integer division, cast to

0.0 and added to 7.0, a = 7.0; */

 

 Mathematical Functions
Verilog-A supports a wide range of  functions to help in describing  analog behavior. These
include the standard  mathematical functions,  transcendental and  hyperbolic functions,
and a set of statistical functions.

 

 Standard Mathematical Functions

The  mathematical functions supported by Verilog-A are shown in the following table.
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Function Description Domain Return value

 ln() natural log x>0 real

 log(x) log base 10 x>0 real

 exp(x) exponential X<80 real

 sqrt(x) square root x>=0 real

 min(x,y) minimum of x and y all x, y if either is real, returns real, otherwise returns the type of x,y.

 max(x,y) maximum of x and y all x, y if either is real, returns real, otherwise returns the type of x,y.

 abs(x) absolute value all x same as x

 pow(x,y) x y if x>=0, all y;
if x<0, int(y)

real

 floor(x) floor all x real

 ceil(x) ceiling all x real

For the min() , max() , and abs() functions, the derivative behavior is defined as:

min(x,y) is equivalent to (x < y) ? x : y

max(x,y) is equivalent to (x > y) ? x : y

abs(x) is equivalent to (x > 0) ? x : -x

 

 Transcendental Functions

The  transcendental functions supported by Verilog-A are shown in the following table. All  
operands are  integer or real and will be converted to real when necessary. The
arguments to the  trigonometric and  hyperbolic functions are specified in  radians.

The return values are real.
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Function Description Domain

 sin(x) sine all x

 cos(x) cosine all x

 tan(x) tangent x != n (pi/2), n is odd

 asin(x) arc-sine -1<= x <= 1

 acos(x) arc-cosine -1<= x <= 1

 atan(x) arc-tangent all x

 atan2(x,y) arc-tangent of x/y all x, all y

 hypot(x,y) sqrt(x 2 + y 2 ) all x, all y

 sinh(x) hyperbolic sine x < 80

 cosh(x) hyperbolic cosine x < 80

 tanh(x) hyperbolic tangent all x

 asinh(x) arc-hyperbolic sine all x

 acosh(x) arc-hyperbolic cosine x >= 1

 atanh(x) arch-hyperbolic tangent -1 <= x <= 1

 

 Statistical Functions
Verilog-A supports a variety of functions to provide  statistical distributions. All
parameters are real valued with the exception of  seed_expression , an integer. The
functions return a  pseudo-random number, of type real, based on the distribution type.
When a seed is passed to one of these functions, the seed is modified. The  system
functions return the same value for a given seed value.

 

 The $random Function

The $ random() function returns a new 32-bit random number each time it is called. The
return type is a  signed integer.

Note
The modulus operator,  % , can be used to restrict the return value.
For b > 0, $random %b will restrict the random number to (-b+1) : (b-1).

 

 Syntax

$random[( seed_expression )];

where

The optional seed_expression can be used to control the  random number
generation and must be a signed integer variable.
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 Example

integer seed_value, random_value;

random_value = $random;

// returns a value between -31 and 31.

random_value = $random(seed_value) % 32;

 

 The $dist_uniform and $rdist_uniform Functions

The  $dist_uniform() and  $rdist_uniform() functions return  uniform distributions
across the range. Use $dist_uniform() to return integer values and $rdist_uniform() to
return real values.

 

 Syntax

$dist_uniform( seed_expression , start_expression , end_expression );

$rdist_uniform( seed_expression , start_expression , end_expression );

Where the start and end real parameters bound the values returned. The start value must
be smaller than the end value. The $dist_uniform() parameters start_expression and
end_expression are integer values, and for $rdist_uniform() , are real values.

 

 Example

// Returns integer values between 0:10

random_value = $dist_uniform(mySeed, 0, 10);

 

 The $dist_normal and $rdist_normal Functions

The  $dist_normal() and  $rdist_normal() functions return  normal distributions around
a mean value. Use $dist_normal() to return integer values and $rdist_normal() to
return real values.

 

 Syntax



Advanced Design System 2011.01 - Verilog-A and Verilog-AMS Reference Manual

46

$dist_normal( seed_expression , mean_expression , stdev_expression );

$rdist_normal( seed_expression , mean_expression , stdev_expression );

where

stdev_expression determines the shape ( standard deviation) of the density function. It is
an integer value for $dist_normal and a real value for $rdist_normal.

A mean_expression value of zero (0) and a stdev_expression of one (1) generates a  
Gaussian distribution. In general, larger numbers for stdev_expression spread out the
returned values over a larger range. It is an integer value for $dist_normal and a real
value for $rdist_normal.

The mean_expression parameter causes the average value of the return value to approach
the mean_expression.

 

 Example

// Returns a Gaussian distribution

random_value = $rdist_normal(mySeed, 0.0, 1.0);

 

 The $dist_exponential and $rdist_exponential Functions

The  $dist_exponential() and  $rdist_exponential() functions generate a distribution
that follows an exponential. Use $dist_exponential() to return integer values and
$rdist_exponential() to return real values.

 

 Syntax

$dist_exponential( seed_expression , mean_expression );

$rdist_exponential( seed_expression , mean_expression );

where

mean_expression parameter causes the average value of the return value to approach the
mean. The mean_expression value must be greater than zero (0). It is an integer value
for $dist_exponential and a real value for $rdist_exponential .
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 Example

// Exponential distribution approaching 1

random_value = $rdist_exponential(mySeed, 1);

 

 The $dist_poisson and $rdist_poisson Functions

The  $dist_poisson() and  $rdist_poisson() functions return a  Poisson distribution
centered around a mean value. Use $dist_poisson() to return integer values and
$rdist_poisson() to return real values.

 

 Syntax

$dist_poisson( seed_expression , mean_expression );

$rdist_poisson( seed_expression , mean_expression );

where

mean_expression value must be greater than zero (0).

The mean_expression parameter causes the average value of the return value to approach
the mean_expression ). It is an integer value for $dist_poisson and a real value for
$rdist_poisson.

 

 Example

// Distribution around 1

random_value = $rdist_poisson(mySeed,1);

 

 The $dist_chi_square and $rdist_chi_square Functions

The  $dist_chi_square() and  $rdist_chi_square() functions returns a  Chi-Square
distribution. Use $dist_chi_square() to return integer values and $rdist_chi_square()
to return real values.

 

 Syntax
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$dist_chi_square( seed_expression , degree_of_freedom_expression );

$rdist_chi_square( seed_expression , degree_of_freedom_expression );

where

degree_of_freedom_expression parameter helps determine the shape of the density
function. Larger values spread the returned values over a wider range. The
degree_of_freedom_expression value must be greater than zero (0). It is an integer value
for $dist_chi_square and a real value for $rdist_chi_square.

 

 Example

// Chi-Square

random_value = $rdist_chi_square(mySeed,1.0);

 

 The $dist_t and $rdist_t Functions

The  $dist_t() and  $rdist_t() functions returns a  Student's T distribution of values.
Use $dist_t() to return integer values and $rdist_t() to return real values.

 

 Syntax

$dist_t( seed_expression , degree_of_freedom_expression );

$rdist_t( seed_expression , degree_of_freedom_expression );

where

degree_of_freedom_expression parameter helps determine the shape of the density
function. Larger values spread the returned values over a wider range. The
degree_of_freedom_expression must be greater than zero (0). It is an integer value for
$dist_t and a real value for $rdist_t.

 

 Example

// Student's T distribution of 1.0

random_value = $rdist_t(mySeed,1.0);



Advanced Design System 2011.01 - Verilog-A and Verilog-AMS Reference Manual

49

 

 The $dist_erlang and $rdist_erlang Functions

The  $dist_erlang() and  $rdist_erlang() functions return values that form an  Erlang
random distribution. Use $dist_erlang() to return integer values and $rdist_erlang() to
return real values.

 

 Syntax

$dist_erlang( seed_expression , _k_stage_expression_ , mean_expression

);

$rdist_erlang( seed_expression , _k_stage_expression_ , mean_expression

);

where

mean_expression and _k_stage_expression_ values must be greater than zero (0). The
mean_expression parameter causes the average value of the return value to approach this
value. It is an integer value for $dist_erlang and a real value for $rdist_erlang .

 

 Example

// Erlang distribution centered around 5.0 with a range of 2.0.

random_value = $rdist_erlang(mySeed,2.0, 5.0);
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 Analog Operators and Filters
Analog operators have the same functional syntax as other operators and functions in
Verilog-A, but they are special in that they maintain an internal state. This impacts how
and where they may be used.

Because they maintain their internal state, analog operators are subject to several
important restrictions. These are:

Analog operators cannot be used inside  conditional ( if and  case ) or  looping (  for )
statements unless the  conditional expression is a  genvar expression ( genvars
cannot change their value during the course of an analysis).
Analog operators are not allowed in the  repeat and  while looping statements.
Analog operators can only be used inside an  analog block; they cannot be used
inside  user-defined analog functions.

 Filters are analog functions that provide a means of modifying waveforms. A range of
Laplace and Z-transform filter formulations are available. transition() and slew() are
used to remove discontinuities from piecewise linear and piecewise continuous waveforms.

The  limexp() operator provides a way to bound changes in  exponential functions in
order to improve  convergence properties.

 

 Tolerances
Most simulators use an  iterative approach to solve the  system of  nonlinear equations,
such as the  Newton-Raphson algorithm. Some criteria is needed to indicate that the
numerical solution is close enough to the true solution. Each equation has a tolerance
defined and associated with it (in most cases a  global tolerance is applied). However, the  
analog operators allow  local tolerances to be applied to their equations.

 

 Parameters
Some  analog operators ( Laplace and  Z-transform filters) require  arrays as arguments.

 

 Examples

integer taps[0:3];

taps = {1, 2, 3, 4};

vout1 = zi_nd(vn, taps, {1});
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vout2 = zi_nd(vn, {1, 2, 3, 4}, {1});

 

 Time Derivative Operator
The time derivative operator,  ddt() , computes the derivative of its argument with
respect to time.

 

 Syntax

ddt( expr )

where

expr is an expression with respect to which the  derivative will be taken.

 

 Example

I(n1,n2) <+ C * ddt(V(n1, n2));

 

 Time Integrator Operator
The time integrator operator,  idt (), computes the  time integral of its argument.

 

 Syntax

idt( expr ,[ic [, assert [, abstol ]]] )

where

expr is an expression to be integrated over time.

ic is an optional expression specifying an  initial condition.

assert is an optional integer expression that when true (non-zero), resets the  
integration.

abstol is a constant  absolute tolerance to be applied to the input of the idt()
operator and defines the largest signal level that can be considered to be
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negligible.

In  DC analyses, the idt() operator returns the value of ic whenever assert is given and is
true (non-zero). If ic is not given, idt() multiplies its argument by infinity for DC
analyses. So if the system does not have feedback that forces the argument to zero, ic
must be specified.

 

 Example

V(out) <+ gain * idt(V(in) - V(out),0) + gain * V(in);

 

 Circular Integrator Operator
The  circular integrator operator, idtmod() , converts an expression argument into its
indefinitely integrated form.

 

 Syntax

idtmod( expr [, ic [, modulus [, offset [, abstol ]]]] )

where

expr is the expression to be integrated.

ic is an optional expression specifying an  initial condition. The default value is
zero (0).

 modulus is a positive-valued expression which specifies the value at which the
output of idtmod() is reset. If not specified, idtmod() behaves like the idt()
operator and performs no limiting on the output of the integrator.

offset is a dynamic value added to the integration. The default of offset is zero
(0).

abstol is a constant  absolute tolerance to be applied to the input of the
idtmod() operator and defines the largest signal level that can be considered to
be negligible.

The modulus and offset parameters define the bounds of the integral. The output of the
idtmod() function always remains in the range:

offset <= idtmod_output < offset+modulus
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 Example

phase = idtmod(fc + gain * V(in), 0 , 1, 0);

 Derivative Operator
The derivative operator, ddx(), provides access to the symbolically-computed partial
derivative of its argument with respect to a state variable.

 Syntax

ddx ( expr, potential_or_flow(name) )

where expr is an expression with respect to which the derivative will be taken.

 Example

dxdv = ddx(x, V(in));
x1 = ddx(ddx(V(in1)*sin(V(in2)), V(in1)), V(in2));

The operator returns the partial derivative of its first argument with respect to the second
argument. It holds all other unknowns fixed and evaluates the expression at the current
operating point. The second argument must be the potential of a scalar net or port or the
flow through a branch (the unknown variables, typically voltages and currents, in the
system of equations for the analog solver).

If the expression does not depend explicitly on the second argument, then the ddx()
operator returns zero (0).

 Absolute Delay Operator
The  absolute delay operator, absdelay() , is used to provide delay for a continuous
waveform.

 

 Syntax

absdelay( expr , time_delay [, max_delay ] )

where

expr is the expression to be delayed

 time_delay is a nonnegative expression that defines how much expr is to be
delayed
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If the optional max_delay is specified, the value of time_delay can change during a
simulation, as long as it remains positive and less than max_delay . If max_delay is not
specified, any changes to time_delay are ignored. If max_delay is specified and changed,
any changes are ignored and the simulator will continue to use the initial value.

In  DC and  OP (operating point) analyses, absdelay() returns the value of expr . In  AC
and  small-signal analyses, the input waveform expr is  phase shifted according to:

In the time domain, absdelay() introduces a delay to the instantaneous value of expr
according to the formula:

 

 Example

V_delayed = absdelay( V(in), time_delay )

 

 Transition Filter
The transition filter,  transition() , is used to smooth out  piecewise constant
waveforms. The transition filter should be used for transitions and  delays on digital
signals as it provides  controlled transitions between  discrete signal levels. For smoothly  
varying waveforms, use the  slew filter, slew() .

 

 Syntax

transition( expr [, time_delay [, rise_time [, fall_time [, time_tol

]]]] )

where all values are real and time_delay , rise_time , fall_time , and time_tol are optional
and

expr is the input expression waveform to be delayed

time_delay is the delay time and must be >= 0 (defaults to zero (0))

rise_time is the transition rise time and must be >= 0

fall_time is the transition the fall time and must be >= 0 (If fall_time is not
specified and rise_time is specified, the value of rise_time will be used)

time_tol is the  absolute tolerance and must be > 0
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The transition() filter forces all the  positive transitions of the waveform expr to have a
rise time of rise_time and all  negative transitions to have a fall time of fall_time (after an
initial delay of time_delay ).

The transition() function returns a real number which describes a  piecewise linear
function. It forces the simulator to put time-points at both corners of a transition and to
adequately resolve the transitions (if time_tol is not specified).

In  DC analyses, the output  waveform is identical to the input waveform expr . For  AC
analyses, the transfer function is modeled as having unity transmission across all
frequencies.

The following figure shows an example of a transition() filter on a pulse waveform.

 Transition Filter on Pulse Waveform

 

If interrupted on a rising transition, the function will attempt to finish the transition in the
specified time with the following rules (see the following figure):

If the new time value is below the value at the time of the interruption, the function
will use the old destination as the origin.
If the new destination is above the value at the time of the interruption, the first
origin is retained.

 The TransitionFunction Completion after Interruption
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 Slew Filter
The  slew filter, slew(), provides a means to bound the rate of change of a  waveform. A
typical use of this  analog operator would be to generate continuous signals from a  
piecewise continuous signal.  Discrete-valued signals would use the  transition()
function.

 

 Syntax

slew( expr [, max_pos_slew_rate [, max_neg_slew_rate ]] )

where all the arguments are real numbers and

expr in the input waveform expression

max_pos_slew_rate is the  maximum positive slew rate allowed.
max_pos_slew_rate is optional and must be > 0

max_neg_slew_rate is the  maximum negative slew rate allowed (
max_neg_slew_rate is optional and must be < 0; If not specified, it defaults to
the negative of max_pos_slew_rate)

Any  slope of the  waveform expr that is larger than max_pos_slew_rate is limited to
max_pos_slew_rate for positive transitions and limited to max_neg_slew_rate for negative
transitions. If no rates are specified, slew() returns expr unchanged. If the slope of expr
is in-between the maximum slew rates, the input expr is returned.

In  DC analyses, the input expr is passed through the filter unchanged. In AC  small-signal
analyses, the slew() operator has a unity transfer function. In this case it has  zero
transmission.
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 Slew Rate Limiting of Slope

 

 

 Last Crossing Function
The last crossing function,  last_crossing() , is used to find where a signal expression
last crossed zero (0).

 

 Syntax

last_crossing( expr , dir )

where

expr is the signal expression

dir is an integer flag with values -1, 0, +1

If dir is set to 0 or is not specified, the last crossing will be detected on both positive and
negative signal crossings. If dir is +1 or -1, then the last crossing will only be detected on
rising edge (falling edge) transitions of the signal.

If expr has not crossed zero, the function will return a negative value.

 

 Limited Exponential
An alternative function to the  exp() standard mathematical function is the  limexp()
function. The limexp() function is mathematically equivalent to the exp() function but the
simulator keeps track of the value of the argument at the previous Newton-Raphson
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iteration and limits the amount of change from one iteration to another. The purpose of
this function is to provide better  convergence. The simulator will not converge until the
return value of limexp() equals the exponential exp() for that input.

 

 Syntax

limexp(arg);

 

 Example

Is = Is0 * limexp(Vj / $vt);

 

 Laplace Transform Filters
 Laplace transform filters are used to implement lumped linear continuous-time filters.

 

 laplace_zp()

The  laplace_zp() is used to implement the zero-pole form of the Laplace transform filter.

 

 Syntax

laplace_zp( expr ,ζ,ρ)

where

expr is the expression to be transformed.

ζ (zeta) is a vector of M pairs of real numbers where each pair of numbers
represents a zero. For each pair, the first number is the real part of the zero, the
second number is the imaginary part.

ρ (rho) is a vector of N real pairs, one for each pole. The poles of the function
are described in the same manner as the zeros (the first number is the real part,
the second number is the imaginary part).

The transfer function is:
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where  and  are the real and imaginary parts of the kth zero and  and  are the
real and imaginary parts of the kth pole. For a real pole or real zero root, the imaginary
term is specified as zero (0). If a root is complex, its conjugate must also be specified. If a
root is zero (0), it is implemented as s , rather than (1- s/r ), where r is the root.

 

 laplace_zd()

The laplace_zd() represents the zero-denominator form of the Laplace transform filter.

 

 Syntax

laplace_zd( expr ,ζ,d )

where

expr is the expression to be transformed.

ζ (zeta) is a vector of M pairs of real numbers where each pair of numbers
represents a zero. For each pair, the first number is the real part of the zero, the
second number is the imaginary part.

d is a vector of N real numbers representing the coefficients of the denominator.

The transfer function is:
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where  and  are the real and imaginary parts of the kth zero and dk is the coefficient

of the kth power of s in the denominator. For a real zero, the imaginary term is specified
as zero (0). If a root is complex, its conjugate must also be specified. If a root is zero (0),
it is implemented as s , rather than (1- s/r ), where r is the root.

 

 laplace_np()

The  laplace_np() implements the numerator-pole form of the Laplace transform filter.

 

 Syntax

laplace_np( expr , n ,ρ)

where

expr is the expression to be transformed.

n is a vector of M pairs of real numbers containing the coefficients of the
numerator.

ρ (rho) is a vector of N pairs of real numbers. Each pair represents a pole, the
first number in the pair is the real part of the pole and the second is the
imaginary part.

The transfer function is:

where  and  are the real and imaginary parts of the kth pole and nk{
} is the

coefficient of the kth power of s in the numerator. For a real pole, the imaginary term is
specified as zero (0). If a pole is complex, its conjugate must also be specified. If a pole is
zero (0), it is implemented as s , rather than (1- s/r ), where r is the pole.
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 laplace_nd()

The  laplace_nd() implements the numerator-denominator form of the Laplace transform
filter.

 

 Syntax

laplace_nd( expr , n , d )

where

expr is the expression to be transformed.

n is a vector of M pairs of real numbers containing the coefficients of the
numerator.

d is a vector of N real numbers containing the coefficients of the denominator.

The transfer function is:

where nk is the coefficient of the kth power of s in the numerator, and dk is the coefficient

of the kth power of s in the denominator.

 

 Z-Transform Filters
The  Z-transform filters implement  linear discrete-time filters. Each filter uses a
parameter T which specifies the filter's sampling period. The zeros argument may be
represented as a null argument. The null argument is produced by two adjacent commas
(,,) in the argument list.

All Z-transform filters share three common arguments: T , t , and t0 .

T specifies the period of the filter, is mandatory, and must be positive.

t specifies the transition time, is optional, and must be non-negative.
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t0 specifies the first transition time. If it is not supplied, the first transition is at t
=0.

 

 zi_zp()

The  zi_zp() operator implements the zero-pole form of the Z-transform filter.

 

 Syntax

zi_zp( expr , ζ , ρ , Τ [, τ [, t

0

 ]] )

where

expr is the expression to be transformed.

ζ (zeta) is a vector of M pairs of real numbers. Each pair represents a zero, the
first number in the pair is the real part of the zero (0) and the second is the
imaginary part.

ρ (rho) is a vector of N real pairs, one for each pole, represented in the same
manner as the zeros.

The transfer function is:

where  and  are the real and imaginary parts of the kth zero, while  and  are
the real and imaginary parts of the kth pole. If a root (a pole or zero) is real, the imaginary
part must be specified as zero (0). If a root is complex, its conjugate must also be
present. If a root is zero (0), the term associated with it is implemented as z , rather than
as (1 - z / r ) where r is the root.

 

 zi_zd()
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The  zi_zd() operator implements the zero-denominator form of the Z-transform filter.

 

 Syntax

zi_zd( expr , ζ , d , Τ [, τ [, t

0

 ]] )

where

expr is the expression to be transformed.

ζ (zeta) is a vector of M pairs of real numbers. Each pair of represents a zero,
the first number in the pair is the real part of the zero and the second is the
imaginary part.

d is a vector of N real numbers containing the coefficients of the denominator.

The transfer function is:

where  and  are the real and imaginary parts of the kth zero, while dk is the

coefficient of the kth power of s in the denominator. If a zero is real, the imaginary part
must be specified as zero (0). If a zero is complex, its conjugate must also be present. If
a zero is zero (0), then the term associated with it is implemented as z , rather than (1 - z
/ζ), where ζ is the zero.

 

 zi_np()

The  zi_np() implements the numerator-pole form of the Z-transform filter.

 

 Syntax

zi_np( expr , n , ρ , Τ [, τ [, t

0

 ]] )
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where

expr is the expression to be transformed.

n is a vector of M real numbers containing the coefficients of the numerator.

ρ (rho) is a vector of N pairs of real numbers where each pair represents a pole,
the first number in the pair is the real part of the pole and the second is the
imaginary part.

The transfer function is:

where nk is the coefficient of the kth power of z in the numerator, while  and  are the

real and imaginary parts of the kth pole. If a pole is real, the imaginary part must be
specified as zero (0). If a pole is complex, its conjugate must also be specified. If a pole is
zero (0), then the term associated with it is implemented as z , rather than as (1 - z /ρ)
where ρ __ is the pole.

 

 zi_nd()

The  zi_nd() implements the numerator-denominator form of the Z-transform filter.

 

 Syntax

zi_nd( expr , n , d , Τ [, τ [, t

0

 ]] )

where

expr is the expression to be transformed.

n is a vector of M real numbers containing the coefficients of the numerator.

d is a vector of N real numbers containing the coefficients of the denominator.
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The transfer function is:

where nk is the coefficient of the kth power of s in the numerator and dk is the coefficient

of the kth power of z in the denominator.
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 Analog Events
The  analog behavior of a component can be controlled using  events. Events have the
characteristics of no  time duration and events can be triggered and detected in different
parts of the  behavioral model.

There are two types of analog events:  global events and  monitored events.

Global events are the initial_step event and the final_step event.

Monitored events are the cross() function, the above() function, and the timer()
function.

Events are detected using the  @ operator.  Null arguments are not allowed.

 

 Global Events
A  global event can be generated by the simulator at various times during the simulation.
A Verilog-A module cannot generate an event but can only detect them using an  event
expression. The two predefined global events are intial_step and final_step. These events
are triggered at the initial (first) and final (last) point in an analysis.

 

 The initial_step Event

The intital_step event is triggered at the first time point of an analysis.

 

 Syntax

@(initial_step [( list_of_analyses )])

where list_of_analyses is an optional comma separated list of quoted strings to be
compared during the simulation.

An optional argument can specify a comma separated list of analyses for the active event.
If a name matches the current analysis name, an event is triggered. If no list is given the  
initial_step global event is active during the first point (or during the initial  DC analysis)
of every analysis.

 

 Example
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@(initial_step("tran","ac","dc"))

 

 The final_step Event

The final_step event is triggered at the last time point of an analysis.

 

 Syntax

@(final_step [( list_of_analyses )])

where list_of_analyses is an optional comma separated list of quoted strings to be
compared during the simulation.

An optional argument can specify a comma separated list of analyses for the active event.
If a name matches the current analysis name, an event is triggered. If no list is given, the
 final_step global event is active during the last point of an analysis.

 

 Example

@(final_step("tran"))

 

 Global Event Return Codes

 Events provide a useful mechanism for executing code that should only occur at the first
and last points of a simulation. The following table defines the return code for the
particular event and analysis type. The return codes in each column are in the sequence
OP p1 pN, where OP indicates the Operating Point, and p1 pN indicates the first and last
points.
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Analysis DCOP
OP

TRAN
OP p1 pN

AC
OP p1 pN

NOISE
OP p1 pN

initial_step() 1 1 0 0 1 0 0 1 0 0

initial_step("ac") 0 0 0 0 1 0 0 0 0 0

initial_step("noise") 0 0 0 0 0 0 0 1 0 0

initial_step("tran") 0 1 0 0 0 0 0 0 0 0

initial_step("dc") 1 0 0 0 0 0 0 0 0 0

initial_step(unknown) 0 0 0 0 0 0 0 0 0 0

final_step() 0 0 0 1 0 0 1 0 0 1

final_step("ac") 0 0 0 0 0 0 1 0 0 0

final_step("noise") 0 0 0 0 0 0 0 0 0 1

final_step("tran") 0 0 0 1 0 0 0 0 0 0

final_step("dc") 1 0 0 0 0 0 0 0 0 0

final_step(unknown) 1 0 0 0 0 0 0 0 0 0

 

 Monitored Events
 Monitored events are triggered due to changes in signals, simulation time, or other
runtime conditions during the simulation.

 

 The cross Function

The cross function,  cross() , is used for generating a monitored  analog event. It is used
to detect  threshold crossings in  analog signals when the expression crosses zero in the
direction specified. The cross() function can control the  timestep to accurately resolve
the crossing. The format is:

cross( expr [, dir [, time_tol [, expr_tol [, enable ]]]] );

where

expr is a required argument

dir is an optional argument that is an  integer expression

time_tol and expr_tol are optional arguments that are real

enable is an optional expression that enables the cross

If the tolerances are not defined, they are set by the simulator. If either or both
tolerances are defined, then the direction of the crossing must also be defined. The
direction can only evaluate to +1, -1, or 0. If dir is set to 0 or is not specified, the event
and timestep control will occur on both positive and negative signal crossings. If dir is +1,
then the event and timestep control occurs on the rising transitions of the signal only. If
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dir is -1, then the event and timestep control occurs on the falling transitions of the signal
only. For other transitions of the signal, the cross() function will not generate an event.
The expr_tol and time_tol arguments represent the maximum allowable error between the
estimated crossing point and the actual crossing point.

If enable is specified and nonzero, then the cross() functions as described. If the enable
argument is specified and it is zero, then cross() is inactive. In this case, it does not
generate an event at threshold crossings and does not act to control the timestep.

 

 Example

The following description of a sample-and-hold illustrates how the cross() function can be
used.

module sample_and_hold (in, out, sample);

output out;

input in, sample;

electrical in, out, sample;

real state;

analog begin

   @(cross(V(sample) -2.0, +1.0))

   state = V(in);

   V(out) <+ transition(state, 0, 10n);

end

endmodule

The cross() function is an analog operator and shares the same restrictions as other  
analog operators. It cannot be used inside an if() ** or case() statement unless the
conditional expression is a genvar expression. Also, cross() is not allowed in the repeat()
and while() statements but is allowed in the analog for, analog_for, statements.

 The above Function

The above function provides a way to generate an event when a specified expression
becomes greater than or equal to zero. An above event can be generated and detected
during initialization as compared to a cross event, which can be generated and detected
only after at least one transient time step is finished.

 Syntax

above (expr [ , time_tol [ , expr_tol [, enable ]]] )

where

expr is a real expression whose value is to be compared to zero.

time_tol is a constant real, positive expression and is the largest non-negligible
time interval.
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expr_tol is a constant real, positive expression and is the largest non-negligible
difference.

enable is an optional expression that enables the above operator

If expr_tol is specified, both it and time_tol must be satisfied. If expr_tol is not specified,
the simulator uses the value of its own reltol parameter. During a transient analysis, after
time t = 0, the above function then behaves the same as a cross function specified as:

cross(expr , 1 , time_tol, expr_tol )

During a transient analysis, the time steps are controlled by the above function to
accurately resolve the time when expr rises to zero or above. The above() function is
subject to the same restrictions as other analog operators. That is, it can not be used
inside if, case or for statements unless these statements are controlled by genvar-
constant expressions.

If enable is specified and nonzero, then the above() functions as described. If the enable
argument is specified and it is zero, then above() is inactive and no events are generated.

 Example

The following example illustrates to use the above function. The function generates an
above event each time the analog voltage increases through the value specified by Vth_HI
or decreases through the value specified by Vth_LO.

`include "disciplines.vams"

`define HIGH 1

`define LOW  0

module test_above(in, out);

electrical in, out;

parameter real Vth_HI = 3;

parameter real Vth_LO = 1;

real out_value;

analog begin

     @(above(V(in) - Vth_HI))

       out_value = `HIGH;

     @(above(Vth_LO - V(in)))

       out_value = `LOW;

     V(out) <+ out_value;

end

endmodule

 

 The timer Function

The timer function,  timer(), is used to generate  analog events. It is used to detect
specific points in time.
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 Syntax

timer ( start_time [, period [, enable ]] );

where

start_time is a required argument

period and time_tol are optional arguments

enable is an optional expression that enables the timer

The timer() function schedules an event to occur at an absolute time ( start_time ). If the
period is specified as greater than zero, the timer function schedules subsequent events at
all integer multiples of period.

If enable is specified and nonzero, then the timer() functions as described. If the enable
argument is specified and it is zero, then timer() is inactive. In this case, it does not
generate an event at the specified times. If enable becomes nonzero, the timer() behavior
continues as if it had not been disabled.

 

 Example

A  pseudo-random bit stream generator is an example of how the timer() function can be
used.

module bitStreamGen (out);

output out;

electrical out;

parameter period = 1.0;

integer x;

analog begin

   @(timer(0, period))

   x = $random + 0.5;

   V(out) <+ transition( x, 0.0 );

end

endmodule

 

 Event or Operator
The  or operator provides a mechanism to trigger an event if any one of the events
specified occurs.

 

 Example
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@(initial_step or initial_step("static"))

 

 Event Triggered Statements
When an  event is triggered, the statement block following the event is executed. The
statement block has two restrictions.

The statements in the statement block cannot have  expressions that include  analog
operators.
The statements in the statement block cannot be  contribution statements.
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 Mixed Signal Behavior Models
The Verilog-AMS Hardware Description Language (HDL) provides a way to describe
analog, digital, and mixed signal aspects of a circuit. The language supports the use of
both digital and analog simulators and handles the mixed signal interaction between the
simulators and modules. The language is hierarchical and so supports top-down design of
systems.

This topic defines terms, describes the syntax, and explains the language usage for
modeling analog and mixed signal blocks. For a detailed description of the digital aspects
of the language, please refer to the complete IEEE 1364-1995 Verilog HDL document.

 Introduction to AMS
In Verilog-AMS HDL, the domain of a value determines the whether the variable is
calculated in the continuous domain (analog) or in the discrete domain (digital). Register
contents and the states of gate primitives are determined in the discrete domain. The
potentials and flows (for the electrical nature, this would be voltages and currents) are
calculated in the continuous domain. Real and integer variables are calculated in both
domains depending on how their values are assigned. Values in the continuous (analog)
domain vary continuously. Values calculated in the discrete domain change
instantaneously at interval multiples of some minimum resolvable time.

Statements in a Verilog-AMS module description which appear in an analog block are said
to be in the continuous, or analog, context. All other statements are said to be in the
discrete, or digital, context. A given variable can only be assigned in one context, not
both, and its domain is then determined from the context in which it was assigned.

As described in Verilog-A and Verilog-AMS Modules (verilogaref), Verilog-AMS supports
hierarchical structures for top-down design. Modules communicate between other modules
at their level and other levels through input, output, and bidirectional ports, which
represent a physical connection between the expressions in the different modules. These
expressions are called nets, and so any instantiated module has two nets, one in the
instantiating module, the other in the instantiated module.

Nets can be declared with a discrete or analog discipline, or with no discipline. Nets with
no discipline are considered neutral interconnects. Verilog-AMS permits only digital blocks
and primitives to drive a discrete net. These nets are called drivers. Only analog blocks
can contribute to an analog net. These are called contributions. A signal is a hierarchical
collection of contiguous (through ports) nets. A signal is said to be a digital signal if all of
the nets that make up the signal are in the discrete domain. Likewise, a signal is said to
be an analog signal is all the nets that make up the signal are in the continuous domain. A
mixed signal consists of nets from both the discrete and continuous domains.

Ports are named in a similar fashion. Ports with only analog connections are called analog
ports, ports whose connections are both digital is a digital port, and a port with a digital
and analog connection is a mixed port.

During simulation, drivers in the discrete domain are automatically converted to
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contributions via digital-to-analog connection modules (D2As), which are inserted by the
simulator. The resolved analog signal is then converted back to a digital value. Connect
modules are inserted only at port boundaries. Therefore, when a module contains multiple
continuous assignment statements, they are handled by a single connect module.

The discipline of a net determines which connect modules to use. Discipline Resolution
describes how the resolution is determined.

 Describing Behavior for Analog and Digital
Simulation
High frequency and RF systems often incorporate digital processing and control. In order
to develop, design, and verify these complete systems, simulations need to include both
the digital and analog content and be tested with complex digital stimuli and
measurements. Verilog-AMS provides support for analog and digital behavior through
different expression blocks in modules, including initial blocks, always blocks, and analog
blocks. Digital behavior is typically described in the initial and always blocks or assignment
statements or declarations. A module can have any number of initial and always blocks,
but can include only one analog block.

In the continuous (or analog) domain, nets and variables are known as continuous nets
and continuous variables. In the discrete (digital) domain, nets, variables, and regs are
known as discrete nets, discrete variables, and discrete regs.

Information (values of registers, variables) can be referenced from one domain in the
other. Each domain can read the values of the nets and variables; however, variables can
be set (written) only within the context of their own domain.

Verilog-AMS supports:

Accessing discrete primaries (e.g., nets, regs, or variables) from a continuous context
(analog block)
Accessing continuous primaries (e.g., flows, potentials, or variables) from a discrete
context
Detecting discrete events in a continuous context
Detecting continuous events in a discrete context

Events are detected based on a synchronization algorithm. This algorithm also determines
when the changes in nets and variables from one domain are available in the other.
Examples showing the steps necessary to access variables and detect events are
described in Accessing Discrete Nets and Variables from a Continuous Context.

 Accessing Discrete Nets and Variables from a Continuous Context

There are certain restrictions when accessing nets and variables in the discrete domain
from the continuous domain, because the data types in the continuous domain are more
restrictive than those in the discrete domain. Certain data types cannot be accessed. The
following table lists types that can be accessed.
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 Discreet Data Types Accessible from a Continuous Context

Discrete (net,
reg, variable)
Type

Equivalent
Continuous
Variable Type

Accessibility

real real Discrete reals can be accessed in the continuous context as real
numbers.

integer integer Discrete integers can be accessed in the continuous context.

bit integer Discrete bit and bit groupings (buses and part selections) are
accessed in the continuous context as integer numbers.
Bit 31, the sign bit, is always set to zero (0). The lowest bit of the
bit grouping (bus) is mapped to the 0th bit of the integer. The next
bit of the bus is mapped to the 1st bit of the integer, etc.
For buses of width less than 31 bits, the higher bits of the integer
are set to zero (0).
Access to discrete bit groupings with greater than 31 bits is illegal.

The following example illustrates how to access the variables from the discrete domain
module.

`define HIGH 5

`define LOW 0

module Basic_A2D(digital_net, analog_net);

input digital_net;

wire digital_net;

logic digital_net;

output analog_net;

electrical analog_net;

real value;

analog begin

  case (digital_net)

  1'b1: value = `HIGH;

  1'bx: value = value; // retain value

  1'b0: value = `LOW;

  1'bz: value = (`HIGH+`LOW)/2;

  endcase

  V(analog_net) <+ value;

end

endmodule

 Accessing X and Z Bits of a Discrete Net in a Continuous Context

In the discrete domain nets can contain bits which are set to X (unknown) or Z (high
impedance). Verilog-AMS HDL supports accessing 4-state logic values of nets within the
analog context. Before access in the analog context, the X and Z states must be
translated to equivalent analog real or integer values. The language provides the following
specific features to perform this conversion:

the case equality operator (===)
the case inequality operator (!==)
the case, casex, and casez statements
binary, octal and hexadecimal numeric constants which can contain X and Z as digits

The case equality and case inequality operators have the same precedence as the equality
operator. An if-else-if statement using the case equality operators also can be used to
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perform the 4-state logic value comparisons. Digital net and digital binary constant
operands can also be accessed from analog context expressions; however, it is an error if
these operands return x or z bit values when solved or if the value of the digital variable
being accessed in the analog context goes to either X or Z.

If floating point arithmetic results in infinite or errors, these numbers are represented by
special values representing plus and minus infinity and Not-a-Number (NaN). These
special numbers can be used in digital expressions; however, it is illegal to assign these
values to a branch through contribution in the analog context.

 Accessing Continuous Nets and Variables from a Discrete Context

All continuous nets can be probed from a discrete context using the appropriate access
functions. All probes that are legal in a continuous context of a module are also legal in
the discrete context of a module.

Continuous variables can be read from any discrete context in the same module where
these variables are declared. Since the discrete domain can fully represent all continuous
types, a continuous variable is fully visible when it is accessed in a discrete context.

 Detecting Discrete Events in a Continuous Context

Events in the discrete domain can be detected in a Verilog-AMS HDL continuous context.
The arguments supplied to discrete events in continuous contexts are in the discrete
context. A discrete event in a continuous context is non-blocking, as are other event types
allowed in continuous contexts.

 Detecting Continuous Events in a Discrete Context

Monitored continuous events can be detected in a discrete context. The arguments
supplied to these events are in the continuous context. A continuous event in a discrete
context is blocking, just like other discrete events.

Analog functions can only be called from a continuous context. Similarly, digital functions
can only be called from a digital context.

 Concurrency (Synchronization)

Verilog-AMS HDL manages synchronization between the continuous and discrete domains.
Simulation in the discrete domain proceeds in integer multiples of the digital tick (the
smallest value of the second argument of the timescale directive. Values calculated in the
digital domain remain constant between digital ticks, changing only at digital ticks.

Simulation in the continuous domain proceeds continuously, at the time steps determined
by the analog simulation process. For this reason, there is no time granularity below which
continuous values can be guaranteed to be constant.

 Discipline Resolution
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As discussed previously, a mixed signal is a collection of nets, some with discrete
disciplines and some with continuous disciplines, some with undeclared disciplines. The
process of discipline resolution follows a set of rules to assign disciplines to those nets
whose discipline is undeclared. This is necessary to control auto-insertion of connect
modules, which follow the rules embodied in connect statements.

The discipline assignments are based on:

discipline declarations
default_discipline directives
the design's hierarchical connectivity

The discipline of all of the net segments for every mixed signal is first resolved, then
connect modules are inserted automatically.

 Connect Modules
Once undeclared nets' disciplines have been resolved, connect modules are automatically
inserted to connect the design hierarchy's mixed nets (the nets with continuous and
discrete disciplines connected) together. The continuous and discrete disciplines of the
ports of the connect modules as well as their directions are used to determine the rules in
which the module can be inserted automatically.

Connect module declarations with matching port discipline declarations and directions are
instantiated so as to connect the continuous and discrete domains of the mixed nets.
Supported directional qualifiers are shown in the following table.

 Supported Directional Qualifiers for Connect Modules

Continuous Discrete

input output

output input

inout inout

The connect module is a special form of a module and follows similar syntax.

Syntax

connectmodule module_identifier ( connectmod_port_identifier ,
connectmod_port_identifier ) ;

[ module_items ]

endmodule

 Connect module specification statements

The user can specify any number of connect modules. Specification statements provide a
means for the designer to choose or specify the connect modules in the design.
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Connect specification statements:

Specify which connect modules are used (including parameterization) for connecting
given discrete and continuous disciplines
Override the connect module default disciplines and port directions
Resolve incompatible disciplines

Syntax

connectrules connectrule_identifier;

{ connect_insertion | connect_resolution }

endconnectrules

The connect module specification statement has two forms, the auto-insertion
specification and the discipline resolution specification described below.

 Connect module auto-insertion specification statement

The connect module insertion specification statement determines which connect modules
will be inserted automatically when mixed nets of the appropriate types are encountered.
It chooses the connect module _connect_module_identifier based on the type of mixed
nets in the declaration.

There can be multiple connect module declarations of a given discipline pair. The
specification statement specifies which connect module is to be used in the auto-insertion
process. Parameters of the connect module declaration can be specified by providing a
connect attributes list.

Syntax

connect connect_module_identifier

[ merged|split ] [ #( .parameter_identifier ( expression ) [,...]) ]

[[ direction ] discipline_identifier , [ input | output | inout ]

discipline_identifier ] [,...]] ;

Examples

Connect modules may be reused for different (but compatible) disciplines by specifying
discipline combinations in which the connect module can be used as shown in the following
syntax for this form:

connect connect_module_identifier connect_attributes discipline
_identifier, discipline_identifier ;

where the specified disciplines must be compatible for both the continuous and discrete
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disciplines of the connect module. A module can be used both as a unidirectional and
bidirectional connect module by overriding the port directions of the connect module. This
allows the user to specify the connect rules, rather than having to search the entire
library. The syntax for this form is:

connect connect_module_identifier connect_attributes direction
discipline_identifier, direction discipline_identifier ;

where the specified disciplines must be compatible for both the continuous and discrete
disciplines of the connect module and the specified directions define the type of connect
module.

 Discipline resolution connect statement

When multiple nets with compatible discipline are part of the same mixed net, the
discipline resolution connect statement specifies which particular discipline to use during
the discipline resolution process.

Syntax

connect discipline_list resolveto discipline_identifier ;

If there is an exact match for the set of disciplines specified in the discipline_list, the
resolved discipline would be given by the specified rule. If more than one specified rule
that applies to a given case is found, the simulator will issue a warning and the first match
is used.

If there is not an exact fit, then the resolved discipline is chosen based on the subset of
the rules specified. When there is more than one subset matching a set of disciplines, the
simulator issues a warning message and applies the first subset rule that satisfies the
current case.

Examples

connect a,b,c resolveto c;

connect a,b resolveto a;

For the above set of connect rule specifications,

disciplines a,b would resolve to discipline a.

disciplines a,b,c would resolve to discipline c.

disciplines a,c would resolve to discipline c.

 Passing Parameters Click here to show related information on EEsof Web site!

The attribute method may be used with the connect statement to specify parameter
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values to pass into the connect module so as to override the default values.

Examples

connect a2d_cmos1 #(.tdel(3.5n), .vhi(3.0));

In this example, the parameter tdel is set to 3.5n and the parameter vhi is set to 3.0. The
new values will override the default values for the connect module a2d_cmos1.

 Setting connect_mode

Additional segregation of connect modules at each level of the hierarchy can be controlled
by the connect_mode value. Setting connect_mode to split or merged defines whether all
ports of a common discrete discipline and port direction will either share a connect module
or have individual connect modules.

The connect modules are inserted hierarchically based on the net disciplines and ports at
each level of the hierarchy. The connect_mode split and merged informs the simulator to
try to apply that connect mode. The merged mode is the default.

merged informs the simulator to try to group all the ports (whether input, output, or inout)
into one net and use one connect module.

If more than one input port is connected at a net of a signal, the connect mode split
forces the simulator to use one connect module for each port that converts between the
net discipline and the port discipline.

Example

connect a2d_cmos1 split #(.tdel(3.5n), .vhi(3.0));

informs the simulator to use separate ports.

 Naming Connect Modules

Connection names follow a convention. For example, when the merged connect mode is
used, one or more ports have a given discipline at their bottom connection, call it
BottomDiscipline, and a common signal, CommonSignal, of different discipline at their top
connection. A single connect module, ModuleName, is connected between the top signal
and the bottom signals. In this case, the instance name of the connect module is derived
from the signal name, module name, and the bottom discipline as (note the double
underscore):

CommonSignal__ModuleName__BottomDiscipline

In the split case, consider a module with a given discipline at their bottom connection
and a common signal of another discipline, TopDiscipline, at their top connection. One
module instance is instantiated for each port. For this example, the instance name of the
connect module would be
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CommonSignal__InstName__PortName

where InstName and PortName are the local instance and port names.

 Driver-Receiver Segregation

If the signal has both analog and digital segments in its hierarchy, it is a mixed signal,
otherwise, it retains the internal representation of the analog or digital signal. In the case
of a mixed signal, the appropriate conversion elements are inserted (manually or
automatically) based on these rules:

All the analog segments of a mixed signal are representations of a single analog
node.
Each of the non-contiguous digital segments of a signal is represented internally as a
separate digital signal.
Each non-contiguous digital segment is segregated into the collection of drivers of
the segment and the collection of receivers of the segment.

In the digital domain, signals can have drivers and receivers. A driver makes a
contribution to the state of the signal whereas a receiver accesses (reads) the state of the
signal.

 Driver Access Functions and Net Resolution

Access to individual drivers (a process that assigns a value to the signal or an output port
of a module) and net resolution are used for accurate implementation of connect modules.

The driver access functions apply only to access drivers found in ordinary modules (not to
those found in connect modules). The driver access functions can only be called from
connect modules. A signal can have any number of drivers and for each driver the current
status, value, and strength can be accessed through the appropriate function.

 $driver_count

$driver_count returns an integer representing the number of drivers associated with the
signal.

Syntax

$driver_count(signal_name)

returns the number of drivers associated with the signal signal_name.

Example

for ( i = 0; i < $driver_count(d); i=i+1)

The drivers are arbitrarily numbered from 0 to N-1, where N is the total number of
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ordinary drivers contributing to the signal value.

 $driver_state

$driver_state returns the current value contribution of a specific driver to the state of
the signal.

Syntax

$driver_state(signal_name, driver_index)

Returns the state of the driver, where signal_name is the name of the signal and
driver_index is an integer value between 0 and N-1, where N is the total number of
drivers contributing to the signal value. The state value is returned as 0, 1, X or Z.

Example

if ( $driver_state(d,i) == 1 )

 $driver_strength

$driver_strength returns the current strength contribution of a specific driver to the
strength of the signal.

Syntax

$driver_strength(signal_name, driver_index)

Where signal_name is the name of the signal and driver_index is an integer value
between 0 and N-1, where N is the total number of drivers contributing to the signal
value. The strength value is returned as two strengths, Bits 5-3 for strength0 and Bits 2-0
for strength1 (see IEEE 1364-1995 Verilog HDL sections 7.10 and 7.11).

If the value returned is 0 or 1, strength0 returns the high-end of the strength range and
strength1 returns the low-end of the strength range. Otherwise, the strengths of both
strength0 and strength1 are defined as shown in the following table.

 Strength Value Mapping

strength0          strength1         

Bits 7
Su0

6
St0

5
Pu0

4
La0

3
We0

2
Me0

1
Sm0

0
HiZ0

 0 HiZ1 1
Sm1

2
Me1

3
We1

4
La1

5
Pu1

6
St1

7
Su1

Bits

B5 1 1 1 1 0 0 0 0  0 0 0 0 1 1 1 1 B2

B4 1 1 0 0 1 1 0 0  0 0 1 1 0 0 1 1 B1

B3 1 0 1 0 1 0 1 0  0 1 0 1 0 1 0 1 B0

Example

value = $driver_strength(d,i);
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 driver_update

The status of drivers for a signal can be monitored with the event detection keyword
driver_update. It is used in conjunction with the event detection operator @ to detect
updates to any of the drivers of the signal.

Syntax

event_name@(driver_update driver_name)

Example

always @(driver_update signal_name)

statement;

causes the statement to execute any time a driver of the signal signal_name is updated.
Here, an update is defined as the addition of a new pending value to the driver. This is
true whether or not there is a change in the resolved value of the signal.
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 Verilog-A and Verilog-AMS, and the
Simulator
This topic describes how to access information related to the  simulator function as well as
provide information to the simulator to control or support the simulator.

 

 Environment Parameter Functions
The  environment parameter functions return simulator environment information.

 

 The temperature Function

The temperature function,  $temperature() , returns the  ambient temperature of the
circuit in  Kelvin. The function has no arguments.

 

 Syntax

$temperature[( )]

 

 Example

DevTemp = $temperature;

 

 The abstime Function

The absolute time function,  $abstime , returns the simulation time, in seconds.

 

 Syntax

$abstime

 

 Example
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simTime = $abstime;

 

 The realtime Function

The realtime function,  $realtime , returns the simulation time in seconds.

 

 Syntax

$realtime[( )]

 

 Example

CurTimeIn_mS = $realtime();

 

 The Thermal Voltage Function

The thermal voltage function,  $vt , returns the  thermal voltage (kT/q) at the circuit's  
ambient temperature. Optionally, a temperature (in Kelvin) can be supplied and the
thermal voltage returned is calculated at this temperature.

 

 Syntax

$vt[( temperature_expression )]

 

 Example

DevVth = $vt(Tnom + `P_CELSIUS0); // Tnom in C

Note
The  macro P_CELSIUS0 , defined in the  constants.vams header file, provides a convenient way to offset
temperatures.

 

 Controlling Simulator Actions
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Verilog-A supports several functions to allow the model code to influence the  simulation
flow.

 

 Bounding the Time Step

The bound step function,  $bound_step , places a  bound on the size of the next time step.
The simulator may still choose to select a smaller  time step but $bound_step will restrict
the maximum step that will be used. The function has no return value.

 

 Syntax

$bound_step( expression );

where expression is a required argument and sets the maximum time step (in seconds)
that the simulator will take.

 

 Example

$bound_step(maxTimeStep);

 

 Announcing Discontinuities

The discontinuity function,  $discontinuity , provides information about  discontinuities
in the  module. The function has no return value.

Discontinuities can cause  convergence problems for simulators and should be avoided
when possible. Filter functions such as  transition() ,  limexp() , and others can be
used to smooth behavior of discontinuous functions. It is not necessary to use the
$discontinuity function to declare discontinuities caused by switch branches and built-in
system functions.

 

 Syntax

$discontinuity[( constant_expression )];

where constant_expression is an optional argument that indicates the degree of the
discontinuity. That is, $discontinuity(i) implies a discontinuity in the i 'th derivative of
the constitutive equation taken with respect to the signal value or time; i must be non-
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negative.

 

 Example

@(cross(V(input, output)))

   $discontinuity(1); // Declare a discontinuity in slope

 

 Analysis Dependent Functions
The  analysis dependent functions interact with the simulator based on the analysis type.

 

 Analysis Function

The  analysis function, analysis() , provides a way to test the current analysis. The
function accepts a single string or a list of  strings as an argument and returns true (1) if
any argument matches the current analysis type or false (0) if no matches are found.

 

 Syntax

analysis(analysis_list)

The analysis list is not predefined but is set by the simulator. Simulators typically support
the analysis types defined by  SPICE, see the following table Types of Analyses. If a type
is unknown, the simulator returns no match. The return codes for analysis functions are
summarized in the next table below, Analysis Function Return Codes.

 Types of Analyses

Name Description of Analysis

"ac" SPICE .AC analysis

"dc" SPICE .OP (operation point) or DC

"noise" SPICE .NOISE analysis

"tran" SPICE .TRAN transient analysis

"ic" SPICE .IC initial condition analysis which precedes a transient analysis

"static" Equilibrium point analysis. Examples are DC analysis and other analyses that use a preceding DC
analysis, such as AC or noise.

"nodeset" Phase during static calculation where nodesets are forced

 Analysis Function Return Codes
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Analysis Argument DC TRAN
OP TRAN

AC
OP AC

NOISE
OP AC

First part of "static" "nodeset" 1 1     0 1     0 1     0

Initial DC state "static" 1 1     0 1     0 1     0

Intial condition "ic" 0 1     0 0     0 0     0

DC "dc" 1 0     0 0     0 0     0

Transient "tran" 0 1     1 0     0 0     0

Small-signal "ac" 0 0     0 1     1 0     0

Noise "noise" 0 0     0 0     0 1     1

 

 Example

if (analysis("ic"))

   Vj = 0.7;

 

 AC Stimulus Function

The  AC stimulus function, ac_stim() , produces a sinusoidal stimulus for use during a
small-signal analysis. During  large-signal analyses such as DC and transient, the AC
stimulus function returns zero (0). The  small-signal analysis name depends on the
simulator, but the default value is "ac".

If the small-signal analysis matches the analysis name, the source is activated with a  
magnitude of mag (default 1.0) and  phase of phase (default 0.0, in  radians).

 

 Syntax

ac_stim([ analysis_name [, mag [, phase ]]])

 

 Noise Functions

A variety of functions provide a way to easily support  noise modeling for  small-signal
analyses. Noise is not contributed for  transient analyses. In these cases, use the  
$random system task to contribute noise.

 

 White Noise Function

 White noise processes are completely uncorrelated with any previous or future values,
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and are therefore frequency-independent.

 

 Syntax

white_noise( pwr [, name ])

generates a frequency-independent noise of  power pwr.

The optional name labels the  noise contribution so that it can be grouped with other noise
contributions of the same name in the same module when a noise contribution summary
is produced.

 

 Example

I(n1, n2) <+ V(n1, n2) / R + white_noise(4 * `P_K * $temperature / R,

"thermal");

 

 Flicker Noise Function

The  flicker noise function, flicker_noise() , models flicker noise processes.

 

 Syntax

flicker_noise( pwr , exp [, name ])

generates a frequency-dependent noise of power pwr at 1 Hz which varies in proportion to
the expression 1/fexp.

The optional name labels the  noise contribution so that it can be grouped with other noise
contributions of the same name in the same module when a noise contribution summary
is produced.

 

 Example

I(n1, n2) <+ flicker_noise(KF * pow(abs(I(n1,n2)), AF), 1.0,

"flicker");
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 Noise Table Function

The noise table function,  noise_table(), provides a means to introduce noise via a  
piecewise linear function of frequency.

 

 Syntax

noise_table( vector [, name ])

where

 vector contains pairs of real numbers such that the first number of each pair is frequency
(in Hz) and the second is the  noise power. The pairs must be specified in ascending
frequencies. The noise_table() function will linearly interpolate between number pairs in
order to compute the  power spectral density at each frequency.

name is optional and labels the  noise contribution so that it can be grouped with other
noise contributions of the same name in the same module when a noise contribution
summary is produced.

 

 Example

I(n1, n2) <+ noise_table({1,0.1, 100,0.2, 1e5,0.24}, "surface");
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 System Tasks and I/O Functions
This topic lists the various system tasks and functions available to the user to access
simulator analysis information and shows the usage. System functions provide access to
system level tasks as well as access to simulator information. See the following sections
for details:

File Input/Output Operations
Display Output Operations
Simulator Control Operations

 

 The $param_given Function
The parameter given function,  $param_given(), can be used to test whether a parameter
value was obtained from the default value in its declaration statement or if that value was
overridden by a value passed from the netlist. The $param_given() function takes a
single, required argument, the parameter identifier. The return value is one (1) if the
parameter was overridden by a module instance parameter value assignment and zero (0)
otherwise.

 

 Syntax

$param_given( param_identifier )

where param_identifier is the name of a module parameter.

 

 Example

In this example, if the netlist sets the value of vth0, then the variable BSIM3vth0 is set to
this value. Otherwise the BSIM3vth0 is set to either 0.7 or -0.7 (depending on the value of
BSIM3type).

if ($param_given(vth0))

     BSIM3vth0 = vth0;

else

     BSIM3vth0 = (BSIM3type == `NMOS) ? 0.7 : -0.7;

 

 The $table_model Function
The interpolation function,  $table_model(), allows the module to approximate the
behavior of a system by interpolating between user-supplied data points. The user
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provides a dataset of points ( xi1, xi2, .., xiN, yi) such that f(xi1, xi2, .., xiN) = yi, where f
is the model function and N is the number of independent variables of the model. These
data points are stored in a text file and are accessed during the analysis by the Verilog-A
module.

The interpolation algorithm then approximates the true model behavior at any point in the
domain of the sampled data. Data points outside of the sampled domain will be
approximated via extrapolation of the data within the domain. Extrapolated data can be
inaccurate and should be avoided.

The Verilog-A algorithm is a piecewise-linear interpolation for the $table_model()
function. However, higher-order interpolation algorithms may be provided in a future
revision of the language.

The $table_model() system function has the same restrictions as analog operators. That
is, it cannot be used inside of if(), case(), or for() statements unless these statements
are controlled by genvar-constant expressions.

 

 Syntax

$table_model( table_inputs , table_data_source , table_control_string

);

where

table_inputs is an (optionally multi-dimensional) expression. For more
information on the table_inputs argument, refer to Table Model Inputs.

table_data_source is either a string indicating the name of the file holding the
table data or the name of an array. For more information on the
table_data_source argument, refer to Table Data Source.

table_control_string is a two part string. The first character is an integer
indicating the degrees of the spline interpolation (either 1 | 2| 3). The second
part of the control string consists of one or two characters (either C | L | E)
indicating the type of extrapolation mode at the beginning and end of the data.
For more information on the table_control_string argument, refer to Table
Control String.

The inputs to the $table_model() function are described in more detail in the
following sections.

 

 Table Model Inputs
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The table_inputs are numerical expressions that are used as the independent model
variables for the $table_model() function. They may be any valid expressions that can be
assigned to an analog signal.

 

 Table Data Source

The table_data_source argument specifies the source of sample points for the
$table_model() function. The sample points may come from two sources: files and arrays.
The file source indicates that the sample points be stored in a file, while the array source
indicates that the data points are stored in a set of array variables. The user may choose
the data source by either providing the file name of a file source or a set of array variables
as an argument to the function.

The table is created when the $table_model() system function is called for the first time.
Any changes to the table_data_source argument(s) of the $table_model() after the first
call are quietly ignored (that is, the table model is not recreated). For a file source, each
sample point of the table is represented as a sequence of numbers in the order of Xi1 Xi2
.. XiN Yi, where Xik is the coordinate of the sample point in k th dimension and Yi is the
model value at this sample point. Each sample point must be separated by a new line. The
numbers in the sequence must be separated by one or more spaces or tabs. Comments
may be inserted before or after any sample point; comments must begin with `#' and end
with a new line.

The data file must be in text format only. The numbers must be real or integer. The
sample points can be stored in the file in any order.

 

 Example

The following example shows the contents of a table model files with two dimensions.

# datafile.tbl

# 2-D table model sample example of the function

#   f(x,y) = sqrt(x^2 + y^2)

#

# x y f(x,y)

-2 -2  2.828

-2 -1  2.236

-1 -1  1.414

0  0  0

0  1  1.0

1  1  1.414

1  2  2.236

2  2  2.828

If the source of the data is an array, a set of one-dimensional arrays that contain the data
points must be passed to the $table_model() function. The size of these arrays is
determined by the number of sample points in the table, M. The data are stored in the
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arrays such that for the k th dimension of the i th sample point, kth_dim_array_identifier[ i
] = Xik and such that for the i th sample point output_array_identifier[ i ] = Yi.

 

 Example

For the previous table model example, the same data would be provided to the function in
an array as shown in the following code fragment.

@(initial_step) begin

    x[0]=-2; y[0]=-2; f_table[0]=2.828; // 0th sample point

    x[1]=-2; y[1]=-1; f_table[1]=2.236; // 1st sample point

    x[2]=-1; y[2]=-1; f_table[2]=1.414; // 2nd sample point

    x[3]=-0; y[3]= 0; f_table[3]=0;

    x[4]=-0; y[4]=-1; f_table[4]=1;

    x[5]=-0; y[5]=-1; f_table[5]=1.414;

    x[6]= 1; y[6]= 2; f_table[6]=2.236;

    x[7]= 2; y[7]= 2; f_table[7]=2.828;

end

 

 Table Control String

The control string provides information on how the model should interpolate and
extrapolate the table data. The control string consists of sub-strings for each dimension.
Each sub-string may contain one character indicating the degree of the spine interpolation
and an additional one or two characters indicating the type of extrapolation method to be
used.

 

 Table Interpolation Degree

The degree character is an integer between 1 and 3 representing the degrees of splines to
be used for the interpolation. If not given, a degree of 1 (linear) is assumed. The following
table shows the possible settings.

Table Interpolation Character Interpolation Character Description

1 Linear spline (degree 1)

2 Quadratic spline (degree 2)

3 Cubic spline (degree 3)

 

 Extrapolation Control String

The extrapolation control string is used to control the algorithm to extrapolate beyond the
supplied data domain. The string may contain one or two extrapolation method
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characters. The extrapolation method determines the behavior of the table model when
the point to be evaluated is beyond the domain of the user provided sample points. The
Clamp extrapolation method, specified with the character C, uses a constant value from
the last data point to extend the model.The Linear extrapolation method, specified with
the character L, uses piecewise linear interpolation to estimate the requested point. The
user may also disable extrapolation by setting the Error extrapolation method using the
character E. In this case, an extrapolation error is reported if the $table_model() function
is requested to evaluate a point beyond the interpolation region. The following table
summarizes these options.

Table Extrapolation Character Extrapolation Character Description

C Clamp extrapolation

L Linear extrapolation (default)

E Error condition

For each dimension of the table, users may use up to two extrapolation method characters
to specify the extrapolation method used for each end of the data set. When no
extrapolation method character is supplied, the Linear extrapolation method will be used
for both ends as default behavior. When a single extrapolation method character is
supplied, the specified extrapolation method will be used for both ends of the data set.
When two extrapolation method characters are supplied, the first character specifies the
extrapolation method used for the end with the lower coordinate value and the second
character specifies the extrapolation method for the end with the higher coordinate value.
The following table illustrates some control strings and their interpretation.

Control
String

Interpretation

"1LE,2EC" 1st dimension linear interpolation, linear extrapolation on left, error on extrapolation to right
2nd dimension quadratic interpolation, error on extrapolation to left, clamp on extrapolation to
right

"" Linear interpolation, Linear extrapolation to left and right

,2 1st dimension linear interpolation, 2nd dimension quadratic interpolation, linear extrapolation
to left and right

"3,1" 1st dimension cubic interpolation, 2nd dimension linear interpolation, linear extrapolation to
left and right

 

 Examples

In the first example, the data from the table defined earlier is contributed across the
ports. The data in both dimensions is linearly extrapolated at both ends of the data.

module table_resistor (n1, n2);

electrical n1, n2;

   analog begin

             I(n1, n2) <+ $table_model (V(n1), V(n2), "datafile.tbl", "1L,1L");

   end

endmodule

In the second example, the same information is supplied within the module using the
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array method.

module user_table(n1, n2);

electrical n1, n2;

real x[0:7], y[0:7], f_table[0:7];

analog begin

    @(initial_step) begin

         x[0]=-2; y[0]=-2; f_table[0]=2.828; // 0th sample point

         x[1]=-2; y[1]=-1; f_table[1]=2.236; // 1st sample point

         x[2]=-1; y[2]=-1; f_table[2]=1.414; // 2nd sample point

         x[3]=-0; y[3]= 0; f_table[3]=0;

         x[4]=-0; y[4]=-1; f_table[4]=1;

         x[5]=-0; y[5]=-1; f_table[5]=1.414;

         x[6]= 1; y[6]= 2; f_table[6]=2.236;

         x[7]= 2; y[7]= 2; f_table[7]=2.828;

    end

    I(a, b) <+ $table_model (V(n1), V(n2), x, y, f_table, "1L,1L");

end

endmodule}}

 

 File Input/Output Operations
There are several functions to provide reading and writing to files on the  operating
system. $fopen() opens a file for output while $fclose() closes the file. $fstrobe(),
$fdisplay, and $fwrite() provide functions to write to the file.

 

 The $fopen Function

The file open function,  $fopen(), returns a value whose bits indicate a corresponding
channel available for writing. $fopen() opens the file specified as an argument and
returns the next available 32-bit multichannel descriptor, which is unique for the file. If
the file could not be found or opened for writing, it returns 0.

The multichannel descriptor can be considered to be a set of 32 flags, where each flag
represents a single output channel. The least significant bit (bit 0) always represents
standard output, also called channel 0, while the other bits represent channels which have
been opened by $fopen().

The first call to $fopen() opens channel 1 and returns a value of 2 (bit 1 of the descriptor
is set). The next call to $fopen() opens channel 2 and returns a value of 4 (bit 2 of the
descriptor is set). Subsequent calls open channels 3, 4, 5, etc. and return values of 8, 16,
32, etc. A channel number corresponds to a single bit in the multichannel descriptor. Up to
32 channels may be opened.

 

 Syntax
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multi-channel_descriptor = $fopen( file_name );

where multi-channel_descriptor is an integer value and file_name is the name of the file to
be opened.

 

 The $fclose Function

The file close function,  $fclose(), closes the specified channel in the multichannel
descriptor. Further output to the closed channel is no longer allowed. The $fopen()
function reuses channels which have been closed.

 

 Syntax

$fclose( multi_channel_descriptor );

where multi-channel_descriptor is an integer value representing the channel(s) to be
closed.

 

 The $fstrobe Function

The file strobe function,  $fstrobe(), writes date to the channel(s) specified in the
multichannel descriptor.

 

 Syntax

$fstrobe(multi_channel_descriptor [, list_of_arguments ]);

where multi_channel_descriptor is represents one or more opened files and
list_of_arguments is an optional, comma separated list of quoted strings or expressions.
The arguments for list_of_arguments are the same as those available for the $strobe()
function argument.

 

 Example

integer multi_ch_desc1, multi_ch_desc2, data_value;

@(initial_step) begin

    multi_ch_desc1 = $fopen("data1.txt");
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    multi_ch_desc2 = $fopen("data2.txt");

    data_value = 1;

end

$fstrobe(multi_ch_desc1 | multi_ch_desc2, "Write value %d to both data1.txt and

data2.txt", data_value) ;

 

 The $fdisplay Function

The file display function,  $fdisplay(), writes date to the channel(s) specified in the
multichannel descriptor. It provides the same capability as the $fstrobe() function.

 

 Syntax

$fdisplay( multi_channel_descriptor [, list_of_arguments ]);

where multi_channel_descriptor is represents one or more opened files and
list_of_arguments is an optional, comma separated list of quoted strings or expressions.
The arguments for list_of_arguments are the same as those available for the $strobe
argument.

 

 The $fwrite Function

The file write function,  $fwrite(), writes date to the channel(s) specified in the
multichannel descriptor. It provides the same capability as the $fstrobe() function but
without the newline character.

 

 Syntax

$fwrite( multi_channel_descriptor [, list_of_arguments ]);

where multi_channel_descriptor is represents one or more opened files and
list_of_arguments is an optional, comma separated list of quoted strings or expressions.
The arguments for list_of_arguments are the same as those available for the $strobe()
function argument.

 The $fscanf and $sscanf Function
The $fscanf function provides a means to read data from files. The $sscanf function
provides a means to read data from strings.

 Syntax
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[integer_return_value =] $fscanf (multi_channel_descriptor,

format_string [, list_of_arguments]);

[integer_return_value =] $sscanf (string_variable, format_string [,

list_of_arguments]);

Where multi_channel_descriptor is the multichannel descriptor returned by the $fopen()
command when the file was opened; format_string is a string describing how the data will
be matched and list_of_arguments is optional and comma-separated, where the read data
matching the list of arguments will be stored. For sscanf, string_variable is the string from
which to read the formatted data.

The allowed commands for the format_string are the same as those available for the
$strobe() function argument. Each data value read will be sequentially matched to the
corresponding argument in the list_of_arguments. The list_of_arguments must have the
correct number of variables to match the data value types in the format_string. The
optional return value of the function is set to the number of valid arguments read during
the operation; if the return value is not used, a warning is issued. The channel specified in
the multi_channel_descriptor must be assigned to an open file by using the $fopen()
function.

 Example

The following example reads an integer, real, and character value from the file data.txt
and puts the values in int_value, real_value, and char_value, respectively. The integer
valid is set to the number of valid reads, in this case, 3.

integer multi_ch_desc, valid, int_value, char_value;

real real_value;

@(initial_step)

   multi_ch_desc = $fopen ("data.txt", "r");

valid = $fscanf (multi_ch_desc, "%d %e %c", int_value, real_value, char_value);

 The $fgets Function
The $fgets function provides a means to read a line from a file into a string.

 Example:

integer return_code ;
return_code = $fgets ( str, filedesc );

reads characters from the file specified by filedesc into the string variable, str, until a
newline character is read and transferred to str, or an EOF condition is encountered. If an
error occurs reading from the file, then return_code is set to zero, otherwise, its value is
the number of characters read.

 The $fflush Function
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The $fflush function writes any buffered output to the file(s) specified by the optional file
descriptor. If no argument is supplied, it writes any buffered output to all open files.

 Syntax

$fflush [( multi_channel_descriptor ) ] ;

where: multi_channel_descriptor is an integer that represents opened file(s).

 Examples

The following examples illustrate typical uses for the $fflush command.

$fflush (multi_ch_desc);

$fflush ( );

 

 Display Output Operations
There are several functions available to display information to the user during a
simulation. Each uses the same format specification but has slightly different modes of
operation.

 

 The $strobe Function

The strobe function,  $strobe(), displays its argument when the simulator has  
converged for all  nodes at that time point. The $strobe() function always appends a new
line to its output. The $strobe() function returns a  newline character if no arguments are
passed.

 

 Syntax

$strobe( list_of_arguments );

where list_of_arguments is a comma separated list of quoted strings or expressions.

 

 Examples

$strobe("The value of X is %g", X);
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$strobe(); // print newline

 

 The $display Function

The display function,  $display(), provides the same capability as the  $strobe function
but without the newline character.

 

 Syntax

$display( list_of_arguments );

 

 Example

$display("\n\nWarning: parameter X is %g, max allowed is %g\n\n", X,

maxX);

 

 Format Specification

The following tables describe the escape sequences available for the  formatted output.
The hierarchical format specifier,   %m, does not take an argument. It will cause the
display task to output the hierarchical name of the module, task, function, or named block
which invoked the system task using the  hierarchical format specifier. This feature can be
used to determine which module generated a message, in the case where many modules
are instantiated.

  

 Escape Sequences

Sequence Description

\n newline character

\t tab character

\ \ \ character

\" " character

\ddd character specified by 1-3 octal digits

%% % character
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 Format Specifications

Specifier Description

%h or %H hexadecimal format

%d or %D decimal format

%o or %O octal format

%b or %B binary format

%c or %C ASCII format

%m or %M hierarchical name format

%s or %S string format

 Format Specifications for Real Numbers

Specifier Description

%e or %E exponential format for real type

%f or %F decimal format for real type

%g or %G decimal or exponential format for real type using format that results in shorter printed output

 

 Simulator Control Operations
Simulator control functions provide a means to interrupt simulator execution.

 

 The $finish Simulator Control Operation

The finish task simulator control operation,  $finish, forces the simulator to exit and
optionally print a diagnostic message.

 

 Syntax

$finish [ ( n ) ];

where n is an optional flag to either (0) print nothing, (1) print simulator time and
location, or (2) print simulator time, location, and statistics. The default value is 1.

 

 Example

if (myError)



Advanced Design System 2011.01 - Verilog-A and Verilog-AMS Reference Manual

103

 $finish(1);

 

 The $stop Simulator Control Operation

The stop simulator control option,  $stop, suspends the simulator at the converged
timepoint and optionally prints a diagnostic message.

 

 Syntax

$stop [ ( n ) ];

where n is an optional flag to either (0) print nothing, (1) print simulator time and
location, or (2) print simulator time, location, and statistics. The default value is 1.

 

 Example

if (myError)

   $stop(1);
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 The Verilog-A and Verilog-AMS
Preprocessor
Verilog-A provides a familiar set of  language preprocessing directives for  macro
definitions,  conditional compilation of code, and  file inclusion.  Directives are preceded
by the accent grave ( ` ) character, which should not be confused with a single quote. The
directives are:

 `define

 `else

 `ifdef

 `include

 `resetall

 `undef

 

 Defining Macros
A  macro is defined using the  `define directive

`define name value

For example,

`define PI 3.14

defines a macro called PI which has the value 3.14. PI may now be used anywhere in the
Verilog-A file after this definition. To use PI , the  preprocessing directive character,  
accent grave ( ` ), must precede it. For example,

V(p,n) <+ sin(2*`PI*freq*time);

results in the following code

V(p,n) <+ sin(2*3.14*freq*time);

The directive name must be a valid identifier. It must be a sequence of alpha-numeric
characters and underscores with a leading alpha character. Existing directive names
cannot be used. This includes Verilog-A,  Verilog-AMS and  Verilog-2001 directives.
Examples of invalid macro definitions are:
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`define undef 1 // existing Verilog-A directive - wrong!

`define 1PICO 1p // leading character invalid - wrong!

`define elsif 1 // Verilog 2001 directive - wrong!

Macro text may be presented on multiple lines by using the  Verilog-A line continuation
character,  backslash( \ ), at the end of each line. The backslash must be the last
character on the line. If  white space is inserted after the continuation character then the
system will not continue the line.

 Macros may also be parameterized using an arbitrary number of arguments,

`define name(arg1,arg2,arg3...) value

For example,

`define SUM(A,B) A+B

defines a  parameterized macro called SUM which may be subsequently used as

V(out) <+ `SUM(V(in1),V(in2))

Argument names must also be valid identifiers and are separated by commas. There can
be no space between the name of the macro and the first parenthesis. If there is a space,
then the parenthesis and all characters that follow it are taken to be part of the macro
definition text.

Macros may be re-defined. Doing so will produce a compiler  warning. They may also be
undefined using the  `undef directive:

`undef SUM

The `undef directive takes a single macro name as argument. Note that no directive
character is used here. Using `undef on a macro that has not been defined results in a
compiler warning.

All macros may be removed using the  `resetall directive. This is not frequently used, as
it effectively deletes all macros defined to this point in processing. The directive takes no
arguments as

`resetall

 

 Including Files
The  `include directive allows the inclusion of one file in another.
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`include " filename "

The `include directive accepts a single quoted string, a file name, as argument. If an
absolute filename is given, the compiler looks for the referenced file. If a  relative
filename is given, the compiler first looks in the current working directory and then in the
system include directory for the referenced file. In either case, if the file is found, its
contents are inserted into the current file in place of the include directive. If the file is not
found then the system issues an  error message. The  system include directory is given by

$HPEESOF_DIR/tiburon-da/veriloga/include

Most Verilog-A files begin by including  disciplines.vams and  constants.vams as

`include "disciplines.vams"

`include "constants.vams"

The compiler finds these  system include files in the system include directory above.
Include directives may be nested to twenty levels deep.

 

 Conditional Compilation
Code may be  conditionally compiled using the  ` ifdef- `else- `endif preprocessor
construct. For example,

  

`ifdef macro

statements

`else

statements

 `endif}}
If the  conditional macro is defined, then the first set of statements are compiled, else the
second set of statements are compiled. Both the true and false branches of the conditional
must consist of  lexicographically correct Verilog-A code. Note that as in undef, the
preprocessing directive character is not used in the condition.

The else clause is optional and the construct may be written as,

`ifdef macro

statements

`endif}}

The following example performs output only if the DEBUG macro has been defined.

`ifdef DEBUG

$strobe("Output Voltage:%e", V(out));
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`endif

 

 Predefined Macros
The system has a number of  predefined macros. The first is mandated by the Verilog-A
standard. The macro  __VAMS_ENABLE__ is defined and has value 1.

 

 Verilog-AMS and Verilog 1364 1995/2001 Directives
 Verilog-AMS and  Verilog 1364 directives are not available in the system, but they are all
flagged as  reserved directives for compatibility purposes. The directives are:

  

`default_discipline

`celldefine

 `default_nettype

 `elsif

 `endcelldefine

 `ifndef

 `line

 `nounconnected_drive

 `timescale

 `unconnected_drive

Defining a directive with one of the above names will result in a reserved directive  error
message.

 

 Unsupported Directives
Verilog-A supports two additional directives,  `default_transition and  
`default_function_type_analog . These directives are not supported in this release of
the compiler.
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 Reserved Words in Verilog-A and
Verilog-AMS
This topic lists the reserved Verilog-A keywords. It also includes Verilog-AMS and Verilog-
2001 keywords which are reserved.

A  

abs and

absdelay asin

acos asinh

acosh assign

ac_stim atan

always atan2

analog atanh

analysis  

  

B,C  

begin casez

bound_step ceil

branch cmos

buf connectrules

bufif0 cos

bufif1 cosh

case cross

casex  

  

D  

ddt disable

deassign discipline

default discontinuity

defparam driver_update

delay  

  

E  

edge endnature

else endprimitive

end endspecify

endcase endtable

endconnectrules endtask

enddiscipline event

endfunction exclude

endmodule exp
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F,G,H  

floor function

flow generate

for genvar

force ground

forever highz0

fork highz1

from hypot

  

I,J  

idt initial_step

idtmod inout

if input

ifnone integer

inf join

initial  

  

L,M,N  

laplace_nd min

laplace_np module

laplace_zd nand

laplace_zp nature

large negedge

last_crossing net_resolution

limexp nmos

ln noise_table

log nor

macromodule not

max notif0

medium notif1

  

O,P  

or pow

output primitive

parameter pull0

pmos pull1

posedge pullup

potential pulldown

  

R,S  

rcmos sin

real sinh
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realtime slew

reg small

release specify

repeat specparam

rnmos sqrt

rpmos strobe

rtran strong0

rtranif0 strong1

rtranif1 supply0

scalared supply1

  

T  

table tranif1

tan transition

tanh tri

task tri0

temperature tri1

time triand

timer trior

tran trireg

tranif0  

  

V,W,X,Z  

vectored wor

vt wreal

wait xnor

wand xor

weak0 zi_nd

weak1 zi_np

while zi_zd

white_noise zi_zp

wire  
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 Unsupported Elements
The following table lists the unsupported Verilog-A keywords and functionality.

 

 Unsupported Elements

Hierarchy: Ordered parameter lists in hierarchical instantiation

Hierarchical names, except for node.potential.abstol and node.flow.abstol, which are
supported

Derived natures

The defparam statement

Functions: Accessing variables defined in a function's parent module

Input /
Output:

The %b format character

The \ddd octal specification of a character

Enforcement of input, output, and inout

System tasks: $realtime scaled to the `timescale directive

The %b, %o, and %h specifications

$monitor
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 Standard Definitions
This topic lists the current values of the standard header files that are part of the
distribution.

 

 The disciplines.vams File
  

/*

Verilog-A definition of Natures and Disciplines

$RCSfile: disciplines.vams,v $ $Revision: 1.1 $ $Date: 2003/09/22 01:36:17 $

*/

`ifdef DISCIPLINES_VAMS

`else

`define DISCIPLINES_VAMS 1

discipline logic

domain discrete;

enddiscipline

/*

* Default absolute tolerances may be overriden by setting the

* appropriate _ABSTOL prior to including this file

*/

// Electrical

// Current in amperes

nature Current

units = "A";

access = I;

idt_nature = Charge;

`ifdef CURRENT_ABSTOL

abstol = `CURRENT_ABSTOL;

`else

abstol = 1e-12;

`endif

endnature

// Charge in coulombs

nature Charge

units = "coul";

access = Q;

ddt_nature = Current;

`ifdef CHARGE_ABSTOL

abstol = `CHARGE_ABSTOL;

`else

abstol = 1e-14;

`endif

endnature

// Potential in volts

nature Voltage

units = "V";

access = V;

idt_nature = Flux;

`ifdef VOLTAGE_ABSTOL

abstol = `VOLTAGE_ABSTOL;
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`else

abstol = 1e-6;

`endif

endnature

// Flux in Webers

nature Flux

units = "Wb";

access = Phi;

ddt_nature = Voltage;

`ifdef FLUX_ABSTOL

abstol = `FLUX_ABSTOL;

`else

abstol = 1e-9;

`endif

endnature

// Conservative discipline

discipline electrical

potential Voltage;

flow Current;

enddiscipline

// Signal flow disciplines

discipline voltage

potential Voltage;

enddiscipline

discipline current

potential Current;

enddiscipline

// Magnetic

// Magnetomotive force in Ampere-Turns.

nature Magneto_Motive_Force

units = "A*turn";

access = MMF;

`ifdef MAGNETO_MOTIVE_FORCE_ABSTOL

abstol = `MAGNETO_MOTIVE_FORCE_ABSTOL;

`else

abstol = 1e-12;

`endif

endnature

// Conservative discipline

discipline magnetic

potential Magneto_Motive_Force;

flow Flux;

enddiscipline

// Thermal

// Temperature in Kelvin

nature Temperature

units = "K";

access = Temp;

`ifdef TEMPERATURE_ABSTOL

abstol = `TEMPERATURE_ABSTOL;

`else

abstol = 1e-4;

`endif

endnature

// Power in Watts

nature Power

units = "W";

access = Pwr;

`ifdef POWER_ABSTOL

abstol = `POWER_ABSTOL;



Advanced Design System 2011.01 - Verilog-A and Verilog-AMS Reference Manual

115

`else

abstol = 1e-9;

`endif

endnature

// Conservative discipline

discipline thermal

potential Temperature;

flow Power;

enddiscipline

// Kinematic

// Position in meters

nature Position

units = "m";

access = Pos;

ddt_nature = Velocity;

`ifdef POSITION_ABSTOL

abstol = `POSITION_ABSTOL;

`else

abstol = 1e-6;

`endif

endnature

// Velocity in meters per second

nature Velocity

units = "m/s";

access = Vel;

ddt_nature = Acceleration;

idt_nature = Position;

`ifdef VELOCITY_ABSTOL

abstol = `VELOCITY_ABSTOL;

`else

abstol = 1e-6;

`endif

endnature

// Acceleration in meters per second squared

nature Acceleration

units = "m/s^2";

access = Acc;

ddt_nature = Impulse;

idt_nature = Velocity;

`ifdef ACCELERATION_ABSTOL

abstol = `ACCELERATION_ABSTOL;

`else

abstol = 1e-6;

`endif

endnature

// Impulse in meters per second cubed

nature Impulse

units = "m/s^3";

access = Imp;

idt_nature = Acceleration;

`ifdef IMPULSE_ABSTOL

abstol = `IMPULSE_ABSTOL;

`else

abstol = 1e-6;

`endif

endnature

// Force in Newtons

nature Force

units = "N";
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access = F;

`ifdef FORCE_ABSTOL

abstol = `FORCE_ABSTOL;

`else

abstol = 1e-6;

`endif

endnature

// Conservative disciplines

discipline kinematic

potential Position;

flow Force;

enddiscipline

discipline kinematic_v

potential Velocity;

flow Force;

enddiscipline

// Rotational

// Angle in radians

nature Angle

units = "rads";

access = Theta;

ddt_nature = Angular_Velocity;

`ifdef ANGLE_ABSTOL

abstol = `ANGLE_ABSTOL;

`else

abstol = 1e-6;

`endif

endnature

// Angular Velocity in radians per second

nature Angular_Velocity

units = "rads/s";

access = Omega;

ddt_nature = Angular_Acceleration;

idt_nature = Angle;

`ifdef ANGULAR_VELOCITY_ABSTOL

abstol = `ANGULAR_VELOCITY_ABSTOL;

`else

abstol = 1e-6;

`endif

endnature

// Angular acceleration in radians per second squared

nature Angular_Acceleration

units = "rads/s^2";

access = Alpha;

idt_nature = Angular_Velocity;

`ifdef ANGULAR_ACCELERATION_ABSTOL

abstol = `ANGULAR_ACCELERATION_ABSTOL;

`else

abstol = 1e-6;

`endif

endnature

// Torque in Newtons

nature Angular_Force

units = "N*m";

access = Tau;

`ifdef ANGULAR_FORCE_ABSTOL

abstol = `ANGULAR_FORCE_ABSTOL;

`else

abstol = 1e-6;

`endif
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endnature

// Conservative disciplines

discipline rotational

potential Angle;

flow Angular_Force;

enddiscipline

discipline rotational_omega

potential Angular_Velocity;

flow Angular_Force;

enddiscipline

`endif

 

 The constants.vams File
                     

/*

Verilog-A definition of Mathematical and physical constants

$RCSfile: constants.vams,v $ $Revision: 1.1 $ $Date: 2003/09/22 01:36:17 $

*/

`ifdef CONSTANTS_VAMS

`else

`define CONSTANTS_VAMS 1

// M_ indicates a mathematical constant

`define M_E        2.7182818284590452354

`define M_LOG2E    1.4426950408889634074

`define M_LOG10E   0.43429448190325182765

`define M_LN2      0.69314718055994530942

`define M_LN10     2.30258509299404568402

`define M_PI       3.14159265358979323846

`define M_TWO_PI   6.28318530717958647652

`define M_PI_2     1.57079632679489661923

`define M_PI_4     0.78539816339744830962

`define M_1_PI     0.31830988618379067154

`define M_2_PI     0.63661977236758134308

`define M_2_SQRTPI 1.12837916709551257390

`define M_SQRT2    1.41421356237309504880

`define M_SQRT1_2  0.70710678118654752440

// P_ indicates a physical constant

// charge of electron in coulombs

`define P_Q 1.6021918e-19

// speed of light in vacuum in meters/sec

`define P_C 2.997924562e8

// Boltzman's constant in joules/kelvin

`define P_K 1.3806226e-23

// Plank's constant in joules*sec

`define P_H 6.6260755e-34

// permittivity of vacuum in farads/meter

`define P_EPS0 8.85418792394420013968e-12

// permeability of vacuum in henrys/meter

`define P_U0 (4.0e-7 * `M_PI)

// zero celsius in kelvin

`define P_CELSIUS0 273.15

`endif
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 The compact.vams File
 

/*

Copyright 2002, 2003 Tiburon Design Automation, Inc. All rights reserved.

This software has been provided pursuant to a License Agreement

containing restrictions on its use.  This software contains

valuable trade secrets and proprietary information of

Tiburon Design Automation, Inc. and is protected by law.  It may

not be copied or distributed in any form or medium, disclosed

to third parties, reverse engineered or used in any manner not

provided for in said License Agreement except with the prior

written authorization from Tiburon Design Automation, Inc.

Useful, common macro definitions and utilities

$RCSfile: compact.vams,v $ $Revision: 1.1 $ $Date: 2003/09/22 01:36:17 $

*/

`ifdef COMPACT_VAMS

`else

`define COMPACT_VAMS 1

// SPICE-specific  different values:

`define SPICE_GMIN 1.0e-12

`define SPICE_K  1.3806226e-23

`define SPICE_Q  1.6021918e-19

`define LARGE_REAL 1.0e38

`define MIN_CONDUCTANCE 1.0e-3

`define DEFAULT_TNOM 27

/* NOT_GIVEN are codes that are used to detect if a

* parameter value has been passed (future extensions

* to Verilog-A should make this obsolete).  */

`define NOT_GIVEN -9.9999e-99

`define INT_NOT_GIVEN -9999999

`define N_MINLOG 1.0e-38

`define MAX_EXP 5.834617425e14

`define MIN_EXP 1.713908431e-15

`define EXP_THRESHOLD 34.0

`define TRUE  1

`define FALSE 0

/* Useful macro for setting Type

     example: `SET_TYPE(P_TYPE, N_TYPE, Type);

     will set variable Type                        */

`define SET_TYPE(n, p, Type) Type = 1; if (p == 1) Type = -1; if (n == 1) Type = 1

/* Print out value:

     example: `DEBUG_STROBE("myVariable", myVariable); */

`define DEBUG_STROBE(xName, x) \

`ifdef DEBUG \

     $strobe("\n%s = %g", xName, 1.0*x) \

`else \

     $strobe("") \

`endif

`endif
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 Condensed Reference
Verilog-A is an analog hardware description language standard from Open Verilog
International (www.ovi.org). It can be used to describe analog circuit behavior at a wide
range of abstraction from behavioral models of circuits to compact transistor model
descriptions. The Verilog-A source code is compiled automatically, if necessary, during a
simulation. The netlist format follows the conventional ADS netlisting scheme. Modules
whose names match ADS components will automatically override the built-in model
description.

 

 Verilog-A Module Template

`include "disciplines.vams"   // Natures and disciplines

`include "constants.vams"     // Common physical and math constants

module myModel(port1, port2);

   electrical port1, port2;

   parameter real input1= 1.0 from [0:inf];

   parameter integer input2 = 1 from [-1:1] exclude 0;

   real X;

   // this is a comment

   /* this is a

     * comment block */

   analog begin

       @( initial_step ) begin

           // performed at the first timestep of an analysis

       end

       if (input2 > 0) begin

           $strobe("input2 is positive",input1)

           // module behavioral description

           V(port1, port2) <+ I(port1, port2) * input1;

       end

       @( final_step ) begin

           // performed at the last time step of an analysis

       end

   end

endmodule

 

 Data Types

Data
type

Description

integer Discrete numerical type
integer [integer_name {, integer_name};

real Continuous numerical type
real[real_name {, real_name...};

parameter Attribute that indicates data type is determined at module instantiation.
parameter parameter_type param_name = default_value [from [range_begin:range_end]
[exclude exclude_value];
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 Analog Operators and Filters
Analog operators and filters maintain memory states of past behavior. They can not be
used in an analog function.

Operator Function

Time
derivative

The ddt operator computes the time derivative of its argument.
ddt(expr)

Time integral The idt operator computes the time-integral of its argument.
idt(expr, [ic [ , assert [ , abstol ] ] ] )

Linear time
delay

absdelay() implements the absolute transport delay for continuous waveform.
absdelay(input, time_delay [, maxdelay ])

Discrete
waveform
filters

The transition filter smooths out piecewise linear waveforms.
transition( expr [ , td [ , rise_time [ , fall_time [ , time_tol ] ] ] ] )
The slew analog operator bounds the rate of change (slope) of the waveform.
slew( expr [ , max_pos_slew_rate [ , max_neg_slew_rate ] ] )
The last_crossing() function returns a real value representing the simulation time when a signal
expression last crossed zero.
last_crossing(expr, direction)

Laplace
transform
filters

laplace_zd() implements the zero-denominator form of the Laplace transform filter. The
laplace_np() implements the numerator-pole form of the Laplace transform filter. laplace_nd()
implements the numerator-denominator form of the Laplace transform filter. laplace_zp()
implements the zero-pole form of the Laplace transform filter.
laplace_zp(expr, z, r)

Z-transform
filters

The Z-transform filters implement linear discrete-time filters. Each filter uses a parameter T
which specifies the filter's sampling period. The zeros argument may be represented as a null
argument. The null argument is produced by two adjacent commas (,,) in the argument list.
All Z-transform filters share three common arguments: T, t, and t0.
T specifies the period of the filter, is mandatory, and must be positive. t specifies the transition
time, is optional, and must be nonnegative.
zi_zd() implements the zero-denominator form of the Z-transform filter. zi_np() implements
the numerator-pole form of the Z-transform filter. zi_nd() implements the numerator-
denominator form of the Z-transform filter. zi_zp() implements the zero-pole form of the Z-
transform filter.
zi_zp( expr , z , r , T [ , t [ , t0 ] ] )

limexp Limits exponential argument change from one iteration to the next.
limexp(arg)

 

 Mathematical Functions
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Function Description Domain Return value

ln() natural log x>0 real

log(x) log base 10 x>0 real

exp(x) exponential X<80 real

sqrt(x) square root x>=0 real

min(x,y) minimum of x and y all x, y if either is real, returns real, otherwise returns the type of x,y.

max(x,y) maximum of x and y all x, y if either is real, returns real, otherwise returns the type of x,y.

abs(x) absolute value all x same as x

pow(x,y) xy if x>=0, all y;
if x<0, int(y)

real

floor(x) floor all x real

ceil(x) ceiling all x real

 

 Transcendental Functions

Function Description Domain

sin(x) sine all x

cos(x) cosine all x

tan(x) tangent x != n (pi/2), n is odd

asin(x) arc-sine -1<= x <= 1

acos(x) arc-cosine -1<= x <= 1

atan(x) arc-tangent all x

atan2(x,y) arc-tangent of x/y all x, all y

hypot(x,y) sqrt(x2 + y2) all x, all y

sinh(x) hyperbolic sine x < 80

cosh(x) hyperbolic cosine x < 80

tanh(x) hyperbolic tangent all x

asinh(x) arc-hyperbolic sine all x

acosh(x) arc-hyperbolic cosine x >= 1

atanh(x) arch-hyperbolic tangent -1 <= x <= 1

 

 AC Analysis Stimuli

Function Description

AC Stimulus The AC stimulus function produces a sinusoidal stimulus for use during a small-signal analysis.
ac_stim([analysis_name [, mag [, phase ]]])

 

 Noise Functions
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Function Description

White Noise Generates a frequency-independent noise of power pwr.
white_noise(pwr [, name])

Flicker
Noise

Generates a frequency-dependent noise of power pwr at 1 Hz which varies in proportion to the
expression 1/fexp.
flicker_noise(pwr, exp [, name])

Noise Table Define noise via a piecewise linear function of frequency. Vector is frequency, pwr pairs in
ascending frequencies.
noise_table(vector [, name])

 

 Analog Events

Function Description

Initial Step Event trigger at initial step.
@(initial_step [(list_of_analyses)])

Final Step Event trigger at final step.
@(final_step [(list_of_analyses)])

Cross Zero crossing threshold detection.
cross(expr [ , dir [ , time_tol [ , expr_tol]]] );

Timer Generate analog event at specific time.
timer ( start_time [ , period [ , time_tol ] ] );

 

 Timestep Control

Function Purpose

$bound_step Controls the maximum time step the simulator will take during a transient simulation.
$bound_step( expression );

$discontinuity Provides the simulator information about known discontinuities to provide help for simulator
convergence algorithms.
$discontinuity [( constant_expression )];

 

 Input/Output Functions

Function Return Value

$strobe Display simulation data when the simulator has converged on a solution for all nodes using a
printf() style format.
$strobe(args)

$fopen Open a file for writing and assign it to an associated channel.
multi-channel_desc = $fopen("file");

$fclose Close a file from a previously opened channel(s).
$fclose(multi-channel_desc);

$fstrobe
$fdisplay
$fwrite

Write simulation data to an opened channel(s) when the simulator has converged. Follows format
for $strobe.
$fstrobe(multi-channel_desc, "info to be written");
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 Simulator Environment Functions
The environment parameter functions return simulator environment information.

Function Return Value

$temperature Return circuit ambient temperature in Kelvin.
$temperature

$abstime Return absolute time in seconds.
$abstime

$vt $vt can optionally have Temperature (in Kelvin) as an input argument and returns the thermal
voltage (kT/q) at the given temperature. $vt without the optional input temperature argument
returns the thermal voltage using $temperature.
$vt[(Temperature)]

$analysis Returns true (1) if current analysis matches any one of the passed arguments.
$analysis(str {, str} )

 

 Module Hierarchy
Structural statements are used inside the module block but cannot be used inside the
analog block.

module_or_primative #({.param1(expr){, .param2(expr})} instance_name

({node {, node});

 

 Example

my_src #(.fstart(100), .ramp(z));
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